Which type of symbiosis can the normal flora form with us?

1. Turnbaugh PJ, Ley RE, Hamady M, et al. The Human Microbiome Project. Nature. 2007;449:804–10. [PMC free article] [PubMed] [Google Scholar]

2. Peterson J, Garges S, Giovanni M, et al. The NIH Human Microbiome Project. Genome Res. 2009;19:2317–23. [PMC free article] [PubMed] [Google Scholar]

3. Ehrlich SD . METAHIT Consortium. MetaHIT: the European Union Project on Metagenomics of the Human Intestinal Tract. In: Nelson KE, editor. Metagenomics of the Human Body. New York: Springer; 2011. pp. 307–16. [Google Scholar]

4. The Human Microbiome Project Consortium. A framework for human microbiome research. Nature. 2012;486:215–21. [PMC free article] [PubMed] [Google Scholar]

5. The Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207–14. [PMC free article] [PubMed] [Google Scholar]

6. Hess M, Sczyrba A, Egan R, et al. Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science. 2011;331:463–67. [PubMed] [Google Scholar]

7. Wang ZN, Klipfell E, Bennett BJ, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472:57–82. [PMC free article] [PubMed] [Google Scholar]

8. Sellitto M, Bai G, Serena G, et al. Proof of concept of microbiome-metabolome analysis and delayed gluten exposure on celiac disease autoimmunity in genetically at-risk infants. PLoS ONE. 2012;7:e33387. [PMC free article] [PubMed] [Google Scholar]

9. Paracer S, Ahmadijian V. Symbiosis: An Introduction to Biological Associations. Oxford, UK: Oxford Univ. Press; 2000. [Google Scholar]

10. Rappé MS, Giovannoni SJ. The uncultured microbial majority. Annu Rev Microbiol. 2003;57:369–94. [PubMed] [Google Scholar]

11. Gonzalez A, Clemente JC, Shade A, et al. Our microbial selves: what ecology can teach us. EMBO Rep. 2011;12:775–84. [PMC free article] [PubMed] [Google Scholar]

12. Eckburg PB, Bik EM, Bernstein CN, et al. Diversity of the human intestinal microbial flora. Science. 2005;308:1635–38. [PMC free article] [PubMed] [Google Scholar]

13. Grice EA, Kong HH, Conlan S, et al. Topographical and temporal diversity of the human skin microbiome. Science. 2009;324:1190–92. [PMC free article] [PubMed] [Google Scholar]

14. Ravel J, Gajer P, Abdo Z, et al. Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci USA. 2011;108:4680–87. [PMC free article] [PubMed] [Google Scholar]

15. Knights D, Kuczynski J, Charlson ES, et al. Bayesian community-wide culture-independent microbial source tracking. Nat Methods. 2011;8:761–63. [PMC free article] [PubMed] [Google Scholar]

16. Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65. [PMC free article] [PubMed] [Google Scholar]

17. Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome. Nature. 2011;473:174–80. [PMC free article] [PubMed] [Google Scholar]

18. Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457:480–84. [PMC free article] [PubMed] [Google Scholar]

19. Greenblum S, Turnbaugh PJ, Borenstein E. Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease. Proc Natl Acad Sci USA. 2012;109:594–99. [PMC free article] [PubMed] [Google Scholar]

20. Samuel BS, Gordon JI. A humanized gnotobiotic mouse model of host-archaeal-bacterial mutualism. Proc Natl Acad Sci USA. 2006;103:10011–16. [PMC free article] [PubMed] [Google Scholar]

21. Vaishnava S, Yamamoto M, Severson KM, et al. The antibacterial lectin RegIIIγ promotes the spatial segregation of microbiota and host in the intestine. Science. 2011;334:255–58. [PMC free article] [PubMed] [Google Scholar]

22. Kau AL, Ahern PP, Griffin NW, et al. Human nutrition, the gut microbiome and the immune system. Nature. 2011;474:327–36. [PMC free article] [PubMed] [Google Scholar]

23. Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–131. [PubMed] [Google Scholar]

24. Jumpertz R, Le DS, Turnbaugh PJ, et al. Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am J Clin Nutr. 2011;94:58–65. [PMC free article] [PubMed] [Google Scholar]

25. Turnbaugh PJ, Gordon JI. The core gut microbiome, energy balance and obesity. J Physiol. 2009;587:4153–58. [PMC free article] [PubMed] [Google Scholar]

26. Ravel J, Gajer P, Abdo Z, et al. Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci USA. 2011;108(Suppl. 1):4680–87. [PMC free article] [PubMed] [Google Scholar]

27. von Ohle C, Gieseke A, Nistico L, et al. Real-time microsensor measurement of local metabolic activities in ex vivo dental biofilms exposed to sucrose and treated with chlorhexidine. Appl Environ Microbiol. 2010;76:2326–34. [PMC free article] [PubMed] [Google Scholar]

28. Diaz PI. Microbial diversity and interactions in subgingival biofilm communities. Front Oral Biol. 2012;15:17–40. [PubMed] [Google Scholar]

29. Aas JA, Paster BJ, Stokes LN, et al. Defining the normal bacterial flora of the oral cavity. J Clin Microbiol. 2005;43:5721–32. [PMC free article] [PubMed] [Google Scholar]

30. Donders GG, Bosmans E, Dekeersmaecker A, et al. Pathogenesis of abnormal vaginal bacterial flora. Am J Obstet Gynecol. 2000;182:872–78. [PubMed] [Google Scholar]

31. Cherpes TL, Meyn LA, Krohn MA, et al. Association between acquisition of herpes simplex virus type 2 in women and bacterial vaginosis. Clin Infect Dis. 2003;37:319–25. [PubMed] [Google Scholar]

32. Martin HL, Richardson BA, Nyange PM, et al. Vaginal lactobacilli, microbial flora, and risk of human immunodeficiency virus type 1and sexually transmitted disease acquisition. J Infect Dis. 1999;180:1863–68. [PubMed] [Google Scholar]

33. Sobel JD. Is there a protective role for vaginal flora? Curr Infect Dis Rep. 1999;1:379–83. [PubMed] [Google Scholar]

34. Watts DH, Fazzari M, Minkoff H, et al. Effects of bacterial vaginosis and other genital infections on the natural history of human papillomavirus infection in HIV-1-infected and high-risk HIV-1-uninfected women. J Infect Dis. 2005;191:1129–39. [PubMed] [Google Scholar]

35. Gajer P, Brotman RM, Bai G, et al. Temporal dynamics of the human vaginal microbiota. Sci Transl Med. 2012;4:132ra52. [PMC free article] [PubMed] [Google Scholar]

36. Boskey ER, Telsch KM, Whaley KJ, et al. Acid production by vaginal flora in vitro is consistent with the rate and extent of vaginal acidification. Infect Immun. 1999;67:5170–75. [PMC free article] [PubMed] [Google Scholar]

37. Boskey ER, Cone RA, Whaley KJ, et al. Origins of vaginal acidity: high D/L lactate ratio is consistent with bacteria being the primary source. Hum Reprod. 2001;16:1809–13. [PubMed] [Google Scholar]

38. Klebanoff SJ, Hillier SL, Eschenbach DA, et al. Control of the microbial flora of the vagina by H2O2-generating lactobacilli. J Infect Dis. 1991;164:94–100. [PubMed] [Google Scholar]

39. Kaewsrichan J, Peeyananjarassri K, Kongprasertkit J. Selection and identification of anaerobic lactobacilli producing inhibitory compounds against vaginal pathogens. FEMS Immunol Med Microbiol. 2006;48:75–83. [PubMed] [Google Scholar]

40. Dunstan PK, Johnson CR. Linking richness, community variability, and invasion resistance with patch size. Ecology. 2006;87:2842–50. [PubMed] [Google Scholar]

41. O'Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep. 2006;7:688–93. [PMC free article] [PubMed] [Google Scholar]

42. Gill SR, Pop M, Deboy RT, et al. Metagenomic analysis of the human distal gut microbiome. Science. 2006;312:1355–59. [PMC free article] [PubMed] [Google Scholar]

43. Palmer C, Bik EM, DiGiulio DB, et al. Development of the human infant intestinal microbiota. PLoS Biol. 2007;5:e177. [PMC free article] [PubMed] [Google Scholar]

44. Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486:222–27. [PMC free article] [PubMed] [Google Scholar]

45. Aguirre de Carcer D, Cuiv PO, Wang T, et al. Numerical ecology validates a biogeographical distribution and gender-based effect on mucosa-associated bacteria along the human colon. ISME J. 2011;5:801–9. [PMC free article] [PubMed] [Google Scholar]

46. Minot S, Sinha R, Chen J, et al. The human gut virome: inter-individual variation and dynamic response to diet. Genome Res. 2011;21:1616–25. [PMC free article] [PubMed] [Google Scholar]

47. Kuss SK, Best GT, Etheredge CA, et al. Intestinal microbiota promote enteric virus replication and systemic pathogenesis. Science. 2011;334:249–52. [PMC free article] [PubMed] [Google Scholar]

48. Kane M, Case LK, Kopaskie K, et al. Successful transmission of a retrovirus depends on the commensal microbiota. Science. 2011;334:245–49. [PMC free article] [PubMed] [Google Scholar]

49. Dominguez-Bello MG, Costello EK, Contreras M, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA. 2010;107:11971–75. [PMC free article] [PubMed] [Google Scholar]

50. Koenig JE, Spor A, Scalfone N, et al. Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci USA. 2011;108:4578–85. [PMC free article] [PubMed] [Google Scholar]

51. Sokol H, Pigneur B, Watterlot L, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci USA. 2008;105:16731–36. [PMC free article] [PubMed] [Google Scholar]

52. Mueller S, Saunier K, Hanisch C, et al. Differences in fecal microbiota in different European study populations in relation to age, gender, and country: a cross-sectional study. Appl Environ Microbiol. 2006;72:1027–33. [PMC free article] [PubMed] [Google Scholar]

53. Biagi E, Nylund L, Candela M, et al. Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS ONE. 2010;5:e10667. [PMC free article] [PubMed] [Google Scholar]

54. Agans R, Rigsbee L, Kenche H, et al. Distal gut microbiota of adolescent children is different from that of adults. FEMS Microbiol Ecol. 2011;77:404–12. [PMC free article] [PubMed] [Google Scholar]

55. Flores R, Shi J, Gail MH, et al. Assessment of the human faecal microbiota: II Reproducibility and associations of 16S rRNA pyrosequences. Eur J Clin Invest. 2012;42:855–63. [PMC free article] [PubMed] [Google Scholar]

56. Benson AK, Kelly SA, Legge R, et al. Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc Natl Acad Sci USA. 2010;107:18933–38. [PMC free article] [PubMed] [Google Scholar]

57. Shreiner A, Huffnagle GB, Noverr MC. The “microflora hypothesis” of allergic disease. GI Microbiota Regul Immune Syst. 2008;635:113–34. [PubMed] [Google Scholar]

58. Wu GD, Chen J, Hoffmann C, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;333:105–8. [PMC free article] [PubMed] [Google Scholar]

59. Matzinger P. The danger model: a renewed sense of self. Science. 2002;296:301–5. [PubMed] [Google Scholar]

60. Stecher B, Hardt WD. Mechanisms controlling pathogen colonization of the gut. Curr Opin Microbiol. 2011;14:82–91. [PubMed] [Google Scholar]

61. Winter SE, Thiennimitr P, Winter MG, et al. Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature. 2010;467:426–29. [PMC free article] [PubMed] [Google Scholar]

62. Thiennimitr P, Winter SE, Winter MG, et al. Intestinal inflammation allows Salmonella to use ethanolamine to compete with the microbiota. Proc Natl Acad Sci USA. 2011;108:17480–85. [PMC free article] [PubMed] [Google Scholar]

63. Fuqua C, Greenberg EP. Self perception in bacteria: quorum sensing with acylated homoserine lactones. Curr Opin Microbiol. 1998;1:183–89. [PubMed] [Google Scholar]

64. Fuqua C, Parsek MR, Greenberg EP. Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu Rev Genet. 2001;35:439–68. [PubMed] [Google Scholar]

65. Miller MB, Bassler BL. Quorum sensing in bacteria. Annu Rev Microbiol. 2001;55:165–99. [PubMed] [Google Scholar]

66. Sperandio V, Torres AG, Jarvis B, et al. Bacteria-host communication: the language of hormones. Proc Natl Acad Sci USA. 2003;100:8951–56. [PMC free article] [PubMed] [Google Scholar]

67. Kaper JB, Sperandio V. Bacterial cell-to-cell signaling in the gastrointestinal tract. Infect Immun. 2005;73:3197–209. [PMC free article] [PubMed] [Google Scholar]

68. Waldor MK, Sperandio V. Adrenergic regulation of bacterial virulence. J Infect Dis. 2007;195:1248–49. [PMC free article] [PubMed] [Google Scholar]

69. Pacheco AR, Sperandio V. Inter-kingdom signaling: chemical language between bacteria and host. Curr Opin Microbiol. 2009;12:192–98. [PMC free article] [PubMed] [Google Scholar]

70. Hughes DT, Sperandio V. Inter-kingdom signalling: communication between bacteria and their hosts. Nat Rev Microbiol. 2008;6:111–20. [PMC free article] [PubMed] [Google Scholar]

71. Rasko DA, Moreira CG, Li de R, et al. Targeting QseC signaling and virulence for antibiotic development. Science. 2008;321:1078–80. [PMC free article] [PubMed] [Google Scholar]

72. Rasko DA, Webster DR, Sahl JW, et al. Origins of the E. coli strain causingan outbreak of hemolyticuremic syndrome in Germany. N Engl J Med. 2011;365:709–17. [PMC free article] [PubMed] [Google Scholar]

73. Hung DT, Shakhnovich EA, Pierson E, et al. Small-molecule inhibitor of Vibrio cholerae virulence and intestinal colonization. Science. 2005;310:670–74. [PubMed] [Google Scholar]

74. Hung DT, Rubin EJ. Chemical biology and bacteria: not simply a matter of life or death. Curr Opin Chem Biol. 2006;10:321–26. [PubMed] [Google Scholar]

75. Frank DN, St Amand AL, Feldman RA, et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA. 2007;104:13780–85. [PMC free article] [PubMed] [Google Scholar]

76. Belzer C, de Vos WM. Microbes inside—from diversity to function: the case of Akkermansia. ISME J. 2012;6:1449–58. [PMC free article] [PubMed] [Google Scholar]

77. Ochoa-Reparaz J, Mielcarz DW, Wang Y, et al. A polysaccharide from the human commensal Bacteroides fragilis protects against CNS demyelinating disease. Mucosal Immunol. 2010;3:487–95. [PubMed] [Google Scholar]

78. Caporaso JG, Lauber CL, Costello EK, et al. Moving pictures of the human microbiome. Genome Biol. 2011;12:R50. [PMC free article] [PubMed] [Google Scholar]

79. Dethlefsen L, Relman DA. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci USA. 2011;108:4554–61. [PMC free article] [PubMed] [Google Scholar]

80. Rasko DA, Sperandio V. Anti-virulence strategies to combat bacteria-mediated disease. Nat Rev Drug Discov. 2010;9:117–28. [PubMed] [Google Scholar]

81. Kuczynski J, Lauber CL, Walters WA, et al. Experimental and analytical tools for studying the human microbiome. Nat Rev Genet. 2012;13:47–58. [PMC free article] [PubMed] [Google Scholar]

82. Fredricks DN, Fiedler TL, Marrazzo JM. Molecular identification of bacteria associated with bacterial vaginosis. N Engl J Med. 2005;353:1899–911. [PubMed] [Google Scholar]

83. Srinivasan S, Hoffman NG, Morgan MT, et al. Bacterial communities in women with bacterial vaginosis: High resolution phylogenetic analyses reveal relationships of microbiota to clinical criteria. PLoS ONE. 2012;7(6):e37818. [PMC free article] [PubMed] [Google Scholar]

84. Garrett WS, Gallini CA, Yatsunenko T, et al. Enterobacteriaceae act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis. Cell Host Microbe. 2010;8:292–300. [PMC free article] [PubMed] [Google Scholar]

85. Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65. [PMC free article] [PubMed] [Google Scholar]

86. Reshef DN, Reshef YA, Finucane HK, et al. Detecting novel associations in large data sets. Science. 2011;334:1518–24. [PMC free article] [PubMed] [Google Scholar]

87. Giongo A, Gano KA, Crabb DB, et al. Toward defining the autoimmune microbiome for type 1 diabetes. ISME J. 2011;5:82–89. [PMC free article] [PubMed] [Google Scholar]

88. Brown CT, Davis-Richardson AG, Giongo A, et al. Gut microbiome metagenomics analysis suggests a functional model for the development of autoimmunity for type 1 diabetes. PLoS ONE. 2011;6(10):e25792. [PMC free article] [PubMed] [Google Scholar]

89. Larsen N, Vogensen FK, van den Berg FWJ, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS ONE. 2010;5(2):e9085. [PMC free article] [PubMed] [Google Scholar]

90. Scher JU, Abramson SB. The microbiome and rheumatoid arthritis. Nat Rev Rheumatol. 2011;7(10):569–78. [PMC free article] [PubMed] [Google Scholar]

91. Castellarin M, Warren RL, Freeman JD, et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 2012;22:299–306. [PMC free article] [PubMed] [Google Scholar]

92. Kostic AD, Gevers D, Pedamallu CS, et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 2012;22:292–298. [PMC free article] [PubMed] [Google Scholar]

93. Arthur JC, Perez-Chanona E, Mühlbauer M, et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science. 2012;338:120–23. [PMC free article] [PubMed] [Google Scholar]

94. Doré J. Screening of metagenomic clones; Presented at Int. Hum. Microbiome Consort; Vancouver. Mar. 9–11.2012. [Google Scholar]


Page 2

Examples of putative associations between microbiota and “disease states”

Clinical conditionObserved differences in microbiota compared to a “healthy state”References
Bacterial vaginosis (BV)Greater bacterial diversity observed in women with BV; BV-associated bacteria found to correlate with diagnostic criteria (Amsel's clinical criteria)82, 83
Inflammatory bowel disease (IBD; colitis)Enterobacteriaceae found to correlate with colitis; global microbiota profiles of phylotype and/or gene content distinguish IBD individuals75, 84, 85
Type 1 diabetesBacterial diversity decreased over time in children; functionally aberrant gene content87, 88
Type 2 diabetesRelative proportions of Clostridia (phylum Firmicutes) significantly reduced in diabetic group89
Rheumatoid arthritisSegmented filamentous bacteria or Lactobacillus sp. can activate TH17 cells, resulting in inflammationReviewed in 90
Colorectal cancerIncreased abundances of Fusobacterium sp.; colitis can promote tumorigenesis by altering microbial composition91–93