The interior of a neuron at rest

While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.

Select Citation Style

Copy Citation

Share

Share

Share to social media

Facebook Twitter

URL

https://www.britannica.com/science/resting-potential

Give Feedback

External Websites

Feedback

Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).

Feedback Type

Your Feedback Submit Feedback

Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

External Websites

  • Univeristy of Washington - Neuroscioence for Kids - Lights, Camera, Action Potential

Print Cite

verifiedCite

While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.

Select Citation Style

Copy Citation

Share

Share

Share to social media

Facebook Twitter

URL

https://www.britannica.com/science/resting-potential

Feedback

External Websites

Feedback

Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).

Feedback Type

Your Feedback Submit Feedback

Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

External Websites

  • Univeristy of Washington - Neuroscioence for Kids - Lights, Camera, Action Potential

By The Editors of Encyclopaedia Britannica Article History

Table of Contents

Related Topics:synapse...(Show more)

See all related content →

resting potential, the imbalance of electrical charge that exists between the interior of electrically excitable neurons (nerve cells) and their surroundings. The resting potential of electrically excitable cells lies in the range of −60 to −95 millivolts (1 millivolt = 0.001 volt), with the inside of the cell negatively charged. If the inside of a cell becomes more electronegative (i.e., if the potential is made greater than the resting potential), the membrane or the cell is said to be hyperpolarized. If the inside of the cell becomes less negative (i.e., the potential decreases below the resting potential), the process is called depolarization.

During the transmission of nerve impulses, the brief depolarization that occurs when the inside of the nerve cell fibre becomes positively charged is called the action potential. This brief alteration of polarization, thought to be caused by the shifting of positively charged sodium ions from the outside to the inside of the cell, results in the transmission of nerve impulses. After depolarization, the cell membrane becomes relatively permeable to positively charged potassium ions, which diffuse outward from the inside of the cell, where they normally occur in rather high concentration. The cell then resumes the negatively charged condition characteristic of the resting potential.

As covered in the previous chapter, at rest there is an uneven distribution of ions on either side of the membrane. The inside of the neuron is more negatively charged than the outside.

Figure 4.1. For a typical neuron at rest, sodium, chloride, and calcium are concentrated outside the cell, whereas potassium and other anions are concentrated inside. This ion distribution leads to a negative resting membrane potential. The dotted, blue channels represent sodium leak channels; the striped, green channels represent potassium leak channels; the solid yellow channels represent chloride leak channels. ‘Membrane at Rest’ by Casey Henley is licensed under a Creative Commons Attribution Non-Commercial Share-Alike (CC BY-NC-SA) 4.0 International License.

How the ions are distributed across the membrane plays an important role in the generation of the resting membrane potential. When the cell is at rest, some non-gated, or leak, ion channels are actually open. Significantly more potassium channels are open than sodium channels, and this makes the membrane at rest more permeable to potassium than sodium.

Figure 4.2. At rest, the distribution of ions across the membrane varies for different ions. Additionally, at rest, more potassium non-gated ion channels (emphasized by green circles) are open than sodium channels (emphasized by the blue circle). The dotted, blue channels represent sodium leak channels; the striped, green channels represent potassium leak channels; the solid yellow channels represent chloride leak channels. ‘Channels at Rest’ by Casey Henley is licensed under a Creative Commons Attribution Non-Commercial Share-Alike (CC BY-NC-SA) 4.0 International License.

Potassium Can Cross Membrane at Rest

Since the membrane is permeable to potassium at rest due to the open non-gated channels, potassium will be able to flow across the membrane. The electrochemical gradients at work will cause potassium to flow out of the cell in order to move the cell’s membrane potential toward potassium’s equilibrium potential of -80 mV.

Animation 4.1. Electrochemical gradients drive potassium out of the cell, removing positive charge, making the cell’s membrane potential more negative, in the direction of potassium’s equilibrium potential. The dotted, blue channels represent sodium leak channels; the striped, green channels represent potassium leak channels; the solid yellow channels represent chloride leak channels. ‘Potassium Flow at Rest’ by Casey Henley is licensed under a Creative Commons Attribution Non-Commercial Share-Alike (CC BY-NC-SA) 4.0 International License. View static image of animation.

You might ask, though, if the cell has these open non-gated ion channels, and ions are moving at rest, won’t the cell eventually reach potassium’s equilibrium potential if the membrane is only permeable to potassium?

If the only structural element involved in ion flow present in the cell membrane were the open non-gated potassium channels, the membrane potential would eventually reach potassium’s equilibrium potential. However, the membrane has other open non-gated ion channels as well. There are fewer of these channels compared to the potassium channels, though. The permeability of chloride is about half of that of potassium, and the permeability of sodium is about 25 to 40 times less than that of potassium. This leads to enough chloride and sodium ion movement to keep the neuron at a resting membrane potential that is slightly more positive than potassium’s equilibrium potential.

Animation 4.2. The membrane is most permeable to potassium at rest, and this leads to potassium efflux. However, the membrane is also permeable to chloride and sodium, and the flow of these ions keep the resting membrane potential more positive than potassium’s equilibrium potential. The dotted, blue channels represent sodium leak channels; the striped, green channels represent potassium leak channels; the solid yellow channels represent chloride leak channels. ‘Ion Flow at Rest’ by Casey Henley is licensed under a Creative Commons Attribution Non-Commercial Share-Alike (CC BY-NC-SA) 4.0 International License. View static image of animation.

As ions move across the membrane both at rest and when the neuron is active, the concentrations of ions inside and outside of the cell would change. This would lead to changes in the electrochemical gradients that are driving ion movement. What, then, maintains the concentration and electrical gradients critical for the ion flow that allows the neuron to function properly?

The sodium-potassium pump is the key. The pump uses energy in the form of ATP to move three sodium ions out of the cell and two potassium ions in. This moves the ions against their electrochemical gradients, which is why it requires energy. The pump functions to keep the ionic concentrations at proper levels inside and outside the cell.

Animation 4.3. The sodium-potassium pump is embedded in the cell membrane and uses ATP to move sodium out of the cell and potassium into the cell, maintaining the electrochemical gradients necessary for proper neuron functioning. Three intracellular sodium ions enter the pump. ATP is converted to ADP, which leads to a conformational change of the protein, closing the intracellular side and opening the extracellular side. The sodium ions leave the pump while two extracellular potassium ions enter. The attached phosphate molecule then leaves, causing the pump to again open toward the inside of the neuron. The potassium ions leave, and the cycle begins again. ‘Sodium-Potassium Pump’ by by Casey Henley is licensed under a Creative Commons Attribution Non-Commercial Share-Alike (CC BY-NC-SA) 4.0 International License. View static image of animation.

It is possible to calculate the membrane potential of a cell if the concentrations and relative permeabilities of the ions are known. Recall from the last chapter, the Nernst equation is used to calculate one ion’s equilibrium potential. Knowing the equilibrium potential can help you predict which way one ion will move, and it also calculates the membrane potential value that the cell would reach if the membrane were only permeable to one ion. However, at rest, the membrane is permeable to potassium, chloride, and sodium. To calculate the membrane potential, the Goldman equation is needed.

The Goldman Equation

[latex]V_{m}=61 * \log \displaystyle \frac{1[5]+0.04[145]+0.4[13]}{1[125]+0.04[15]+0.4[150]}= -65 mV[/latex] 

What is inside a neuron at rest?

The resting membrane potential of a neuron is about -70 mV (mV=millivolt) - this means that the inside of the neuron is 70 mV less than the outside. At rest, there are relatively more sodium ions outside the neuron and more potassium ions inside that neuron.

When a neuron is at rest?

A resting (non-signaling) neuron has a voltage across its membrane called the resting membrane potential, or simply the resting potential. The resting potential is determined by concentration gradients of ions across the membrane and by membrane permeability to each type of ion.

Why is the inside of a resting neuron negative?

When the neuronal membrane is at rest, the resting potential is negative due to the accumulation of more sodium ions outside the cell than potassium ions inside the cell.

Is the inside of the neuron at rest more positive or more negative?

The inside of the neuron is more negatively charged than the outside. Figure 4.1. For a typical neuron at rest, sodium, chloride, and calcium are concentrated outside the cell, whereas potassium and other anions are concentrated inside. This ion distribution leads to a negative resting membrane potential.