Qual o papel dos fatores específicos de transcrição na expressão gênica de eucariontes?

O mecanismo de regulação em eucariotos está basicamente sob um controle positivo. Isso porque, se os genes estivessem sob um controle negativo, haveria necessidade da síntese de aproximadamente 100 mil repressores para se ligarem aos operadores gênicos e impedirem a transcrição das cerca de 100 mil proteínas, que seria o número estimado de proteínas anteriormente à conclusão do Projeto Genoma Humano. Considerando um controle positivo, as proteínas regulatórias podem se ligar aos sítios reguladores, estimular a transcrição e se desligar ligando-se em outro local.

Além dos eventos necessários à transcrição de um gene descritos na Unidade III, importante aqui é a observação de que existem nesse mecanismo regulatório os elementos de atuação em “cis” e os elementos regulatórios de ação em “trans”. Os elementos regulatórios em “cis” são aqueles que desempenham funções regulatórias da expressão gênica no mesmo cromossomo da sequência de um gene que irá ser transcrito, como as regiões promotoras dos genes, seus elementos proximais e os distais, destacando-se os reforçadores ou enhancers. Os silenciadores também são sequências em “cis” localizadas na molécula de DNA, cuja função é reduzir ou reprimir as taxas de transcrição de um gene. Os elementos em “trans” são aqueles que desempenham funções regulatórias a distância da sequência pela qual foram codificados, atuando normalmente em cromossomos diferentes dos quais foram produzidos. Os transativadores correspondem às proteínas produzidas por RNA expressos de cromossomos diferentes daqueles em que irão regular, por isso a denominação “trans”. Dentro dessa classe estão as proteínas que atuam como fatores de transcrição (TFs), que são capazes de recrutar outras proteínas, como os coativadores, visto que a afinidade da RNA polimerase ao promotor é baixa, havendo a necessidade de ligação das proteínas regulatórias para aumentar a afinidade da RNA polimerase ao promotor e iniciar a transcrição. Para regular os níveis de transcrição em eucariotos, o modelo é complexo envolvendo a regulação gênica por cascata protéica dada pelos fatores gerais de transcrição (GTFs), como visto na Unidade III.

Qual o papel dos fatores específicos de transcrição na expressão gênica de eucariontes?

Em síntese, os enhancers funcionam como intensificadores, promovendo a transcrição de modo mais eficiente, e os silenciadores, que são as regiões onde proteínas repressoras se ligam inibindo a transcrição dos genes correspondentes. Nos acentuadores se ligam as proteínas coativadoras, que estimulam a transcrição dos genes correspondentes, sendo alvo de fatores específicos. Os acentuadores podem estar localizados acima do gene (upstream), abaixo do gene (downstream), ou mesmo dentro do gene. Frequentemente, os enhancers levam a uma curvatura do DNA devido a interações com as proteínas ligadas à região promotora. Em leveduras, esses elementos estimuladores de transcrição foram descritos como UAS (upstream activating sequences). Essas sequências estão cerca de 100 bases acima do início da transcrição e são equivalentes aos acentuadores dos eucariotos mais complexos .

Qual o papel dos fatores específicos de transcrição na expressão gênica de eucariontes?

O balanço entre a ligação de ativadores e de repressores aos enhancers e aos silenciadores, respectivamente, auxilia no controle das taxas de transcrição dos genes de eucariotos. O que realmente faz com que o gene seja transcrito é a combinação única e particular do promotor e de fatores de transcrição.

Os hormônios e seus fatores de transcrição representam uma classe de reguladores da expressão gênica em “trans” de ligação a sequências denominadas elementos de resposta a hormônio (HRE) (cis), que correspondem aos sítios de ligação no DNA dos receptores proteicos de ligação a hormônios. As proteínas receptoras de hormônio se localizam no citoplasma, mas atuam no núcleo da célula, possuindo domínio de ligação a ligante e domínio de ligação ao DNA, levando à transcrição de genes de resposta a hormônios. Dentre os exemplos dessa classe estão as proteínas receptoras de andrógeno (AR). Essa proteína pertence à família dos receptores nucleares e possui dois domínios dedos de zinco de ligação ao DNA. No citoplasma está na sua forma inativa associada às chaperonas que impedem a sua degradação. Quando a testosterona entra na célula, no citoplasma é convertida em DHT (dihidrotestosterona) pela ação da enzima 5-alfa-redutase, e a DHT se liga ao domínio de ligação a ligante do receptor de andrógeno. O AR complexado à DHT passa para o núcleo e na forma de homodímero levam à transcrição dos genes regulados por hormônio pela ligação ao ARE (elemento de resposta a andrógeno) .

Expressão gênica refere-se a todo o processo de decodificação da informação genética de genes ativos. A regulação gênica nada mais é do que processos celulares que controlam a taxa e a forma de expressão gênica. Quem explica é o oncologista André Murad (foto), em mais um tópico da coluna ‘Drops de Genômica’. Confira.

Expressão gênica refere-se a todo o processo de decodificação da informação genética de genes ativos. Quando os genes estão ativos (expressos) ao longo da vida de uma célula ou organismo, eles apresentam expressão constitutiva. Aqueles genes que são transcritos apenas em certas circunstâncias, em células específicas ou em momentos específicos, apresentam uma expressão denominada condicional.

A regulação gênica nada mais é do que processos celulares que controlam a taxa e a forma de expressão gênica. Um conjunto complexo de interações entre genes, moléculas de RNA, proteínas (incluindo fatores de transcrição) e outros componentes do sistema de expressão determinam quando e onde genes específicos são ativados e a quantidade de proteína ou produto de RNA produzido. As alterações da regulação da expressão gênica são alterações relativamente comuns na gênese e desenvolvimento do câncer. 

Níveis de regulação ou controle da expressão gênica 

A. Controle primário do início da transcrição

Durante a transcrição, o DNA é copiado em RNA. O RNA é então usado para sintetizar proteínas durante a tradução. As principais enzimas envolvidas na transcrição são as RNA polimerases dependentes de DNA. Essas enzimas sintetizam a molécula de RNA com base nos genes codificados no DNA, que contém sítios de partida (promotores) onde começa a transcrição. Fatores de transcrição são necessários para reconhecer o promotor. A RNA polimerase se move ao longo da fita molde do DNA de fita dupla. A fita é sintetizada até que o final do segmento de DNA (local de terminação) seja alcançado.

O transcrito primário recém-formado é ainda modificado para estar, por exemplo, disponível para a síntese de proteínas. Ativadores e repressores são como duas faces da mesma moeda e sua função depende do local de ação, do modo de interação com o DNA e também do estado nutricional da célula.

B. Edição de RNA

A edição de RNA modifica a informação genética no nível do próprio RNA. Um exemplo importante é o gene que codifica a apolipoproteína (Apo) B-100, que está envolvida no metabolismo lipídico (OMIM 107730). Ele codifica uma proteína de 512 kDa de 4.536 aminoácidos. É sintetizado no fígado e secretado no sangue, onde transporta os lipídios. Apo B-48 (250 kDa), uma forma funcionalmente mais curta da proteína com 2.152 aminoácidos, é sintetizada no intestino. Uma desaminase intestinal converte uma citosina no códon 2.152 CAA (glutamina) em uracila (UAA). Essa alteração resulta em um códon de parada (UAA) e, portanto, encerra a tradução neste site.

C. Ativação de genes de longo alcance por um intensificador 

O termo intensificador refere-se a uma sequência de DNA que estimula a iniciação da transcrição. Os potenciadores atuam à distância do gene.  Eles podem estar localizados a montante ou a jusante na mesma fita de DNA (ação cis) ou em uma fita de DNA diferente (ação trans). Os efeitos estimuladores são mediados por proteínas de ligação ao DNA específicas da sequência. Um modelo sugere que o DNA forma uma alça entre um intensificador e o promotor. Uma proteína ativadora ligada ao potenciador, por exemplo, um hormônio esteroide, poderia então entrar em contato com o complexo de fator de transcrição geral no promotor. Os elementos potenciadores fornecem regulação rápida do tecido ou independente do tempo.

Qual a função dos fatores de transcrição nos eucariotos?

Factores de transcrição (TF) são proteínas que se ligam ao DNA de células eucarióticas para permitir que haja uma ligação entre a enzima RNA-polimerase e o DNA, permitindo assim a transcrição e a futura tradução.

O que são fatores de transcrição e qual sua função?

Os fatores de transcrição são proteínas que contém pelo menos dois domínios funcionais: um de ligação com o DNA e outro de ligação com a RNA polimerase. Essas proteínas controlam, quando, onde e como os gene serão transcritos, sendo a base para o controle da expressão gênica.

Como ocorre o processo de transcrição em eucariotos?

-Em eucariotos, a transcrição acontece no núcleo para depois ser sintetizada a proteína pela tradução no citoplasma. Já em procariotos, não existe núcleo. Os dois processos ocorrem no mesmo meio. -O RNA transcrito em eucariotos passa por uma série de alterações antes de serem completamente formados.

Qual a estrutura dos fatores de transcrição que podem regular a expressão de genes?

A transcrição dos genes é catalisada por enzimas chamadas RNA polimerases. Essas enzimas reconhecem sequências no DNA às quais se ligam, chamadas de regiões promotoras, ou simplesmente promotores.