Which of the following labels best matches osteocyte group of answer choices stem cell dissolves matrix mature bone cell secretes organic matrix?

1. Buckwalter J. A., Glimcher M. J., Cooper R. R., Recker R. Bone biology. I: structure, blood supply, cells, matrix, and mineralization. Instructional Course Lectures. 1996;45:371–386. [PubMed] [Google Scholar]

2. Downey P. A., Siegel M. I. Bone biology and the clinical implications for osteoporosis. Physical Therapy. 2006;86(1):77–91. [PubMed] [Google Scholar]

3. Robling A. G., Castillo A. B., Turner C. H. Biomechanical and molecular regulation of bone remodeling. Annual Review of Biomedical Engineering. 2006;8:455–498. doi: 10.1146/annurev.bioeng.8.061505.095721. [PubMed] [CrossRef] [Google Scholar]

4. Datta H. K., Ng W. F., Walker J. A., Tuck S. P., Varanasi S. S. The cell biology of bone metabolism. Journal of Clinical Pathology. 2008;61(5):577–587. doi: 10.1136/jcp.2007.048868. [PubMed] [CrossRef] [Google Scholar]

5. Clarke B. Normal bone anatomy and physiology. Clinical Journal of the American Society of Nephrology. 2008;3(3):131–139. doi: 10.2215/cjn.04151206. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

6. Karsenty G., Kronenberg H. M., Settembre C. Genetic control of bone formation. Annual Review of Cell and Developmental Biology. 2009;25:629–648. doi: 10.1146/annurev.cellbio.042308.113308. [PubMed] [CrossRef] [Google Scholar]

7. Teitelbaum S. L. Osteoclasts: what do they do and how do they do it? The American Journal of Pathology. 2007;170(2):427–435. doi: 10.2353/ajpath.2007.060834. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

8. Bonewald L. F. The amazing osteocyte. Journal of Bone and Mineral Research. 2011;26(2):229–238. doi: 10.1002/jbmr.320. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

9. Everts V., Delaissié J. M., Korper W., et al. The bone lining cell: its role in cleaning Howship's lacunae and initiating bone formation. Journal of Bone and Mineral Research. 2002;17(1):77–90. doi: 10.1359/jbmr.2002.17.1.77. [PubMed] [CrossRef] [Google Scholar]

10. Sims N. A., Gooi J. H. Bone remodeling: Multiple cellular interactions required for coupling of bone formation and resorption. Seminars in Cell and Developmental Biology. 2008;19(5):444–451. doi: 10.1016/j.semcdb.2008.07.016. [PubMed] [CrossRef] [Google Scholar]

11. Matsuo K., Irie N. Osteoclast-osteoblast communication. Archives of Biochemistry and Biophysics. 2008;473(2):201–209. doi: 10.1016/j.abb.2008.03.027. [PubMed] [CrossRef] [Google Scholar]

12. Frost H. M. Tetracycline-based histological analysis of bone remodeling. Calcified Tissue Research. 1969;3(1):211–237. doi: 10.1007/bf02058664. [PubMed] [CrossRef] [Google Scholar]

13. Hauge E. M., Qvesel D., Eriksen E. F., Mosekilde L., Melsen F. Cancellous bone remodeling occurs in specialized compartments lined by cells expressing osteoblastic markers. Journal of Bone and Mineral Research. 2001;16(9):1575–1582. doi: 10.1359/jbmr.2001.16.9.1575. [PubMed] [CrossRef] [Google Scholar]

14. Andersen T. L., Sondergaard T. E., Skorzynska K. E., et al. A physical mechanism for coupling bone resorption and formation in adult human bone. American Journal of Pathology. 2009;174(1):239–247. doi: 10.2353/ajpath.2009.080627. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

15. Dallas S. L., Prideaux M., Bonewald L. F. The osteocyte: an endocrine cell ... and more. Endocrine Reviews. 2013;34(5):658–690. doi: 10.1210/er.2012-1026. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

16. Khosla S., Oursler M. J., Monroe D. G. Estrogen and the skeleton. Trends in Endocrinology and Metabolism. 2012;23(11):576–581. doi: 10.1016/j.tem.2012.03.008. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

17. Sobacchi C., Schulz A., Coxon F. P., Villa A., Helfrich M. H. Osteopetrosis: genetics, treatment and new insights into osteoclast function. Nature Reviews Endocrinology. 2013;9(9):522–536. doi: 10.1038/nrendo.2013.137. [PubMed] [CrossRef] [Google Scholar]

18. Raisz L. G., Rodan G. A. Embryology and cellular biology of bone. In: Avioli L. V., Krane S. M., editors. Metabolic Bone Disease and Clinically Related Disorders. 3rd. New York, NY, USA: Academic Press; 1998. pp. 1–22. [Google Scholar]

19. Phan T. C. A., Xu J., Zheng M. H. Interaction between osteoblast and osteoclast: impact in bone disease. Histology and Histopathology. 2004;19(4):1325–1344. [PubMed] [Google Scholar]

20. Crockett J. C., Mellis D. J., Scott D. I., Helfrich M. H. New knowledge on critical osteoclast formation and activation pathways from study of rare genetic diseases of osteoclasts: focus on the RANK/RANKL axis. Osteoporosis International. 2011;22(1):1–20. doi: 10.1007/s00198-010-1272-8. [PubMed] [CrossRef] [Google Scholar]

21. Fukumoto S., Martin T. J. Bone as an endocrine organ. Trends in Endocrinology and Metabolism. 2009;20(5):230–236. doi: 10.1016/j.tem.2009.02.001. [PubMed] [CrossRef] [Google Scholar]

22. Capulli M., Paone R., Rucci N. Osteoblast and osteocyte: games without frontiers. Archives of Biochemistry and Biophysics. 2014;561:3–12. doi: 10.1016/j.abb.2014.05.003. [PubMed] [CrossRef] [Google Scholar]

23. Marks S. C., Jr., Popoff S. N. Bone cell biology: the regulation of development, structure, and function in the skeleton. American Journal of Anatomy. 1988;183(1):1–44. doi: 10.1002/aja.1001830102. [PubMed] [CrossRef] [Google Scholar]

24. Damoulis P. D., Hauschka P. V. Nitric oxide acts in conjunction with proinflammatory cytokines to promote cell death in osteoblasts. Journal of Bone and Mineral Research. 1997;12(3):412–422. doi: 10.1359/jbmr.1997.12.3.412. [PubMed] [CrossRef] [Google Scholar]

25. Grigoriadis A. E., Heersche J. N. M., Aubin J. E. Differentiation of muscle, fat, cartilage, and bone from progenitor cells present in a bone-derived clonal cell population: effect of dexamethasone. Journal of Cell Biology. 1988;106(6):2139–2151. doi: 10.1083/jcb.106.6.2139. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

26. Ducy P., Zhang R., Geoffroy V., Ridall A. L., Karsenty G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell. 1997;89(5):747–754. doi: 10.1016/s0092-8674(00)80257-3. [PubMed] [CrossRef] [Google Scholar]

27. Komori T., Yagi H., Nomura S., et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell. 1997;89(5):755–764. doi: 10.1016/S0092-8674(00)80258-5. [PubMed] [CrossRef] [Google Scholar]

28. Fakhry M., Hamade E., Badran B., Buchet R., Magne D. Molecular mechanisms of mesenchymal stem cell differentiation towards osteoblasts. World Journal of Stem Cells. 2013;5(4):136–148. doi: 10.4252/wjsc.v5.i4.136. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

29. Nakashima K., Zhou X., Kunkel G., et al. The novel zinc finger-containing transcription factor Osterix is required for osteoblast differentiation and bone formation. Cell. 2002;108(1):17–29. doi: 10.1016/s0092-8674(01)00622-5. [PubMed] [CrossRef] [Google Scholar]

30. Glass D. A., II, Bialek P., Ahn J. D., et al. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Developmental Cell. 2005;8(5):751–764. doi: 10.1016/j.devcel.2005.02.017. [PubMed] [CrossRef] [Google Scholar]

31. Hu H., Hilton M. J., Tu X., Yu K., Ornitz D. M., Long F. Sequential roles of Hedgehog and Wnt signaling in osteoblast development. Development. 2005;132(1):49–60. doi: 10.1242/dev.01564. [PubMed] [CrossRef] [Google Scholar]

32. Kapinas K., Kessler C., Ricks T., Gronowicz G., Delany A. M. miR-29 modulates Wnt signaling in human osteoblasts through a positive feedback loop. The Journal of Biological Chemistry. 2010;285(33):25221–25231. doi: 10.1074/jbc.m110.116137. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

33. Zhang Y., Xie R.-L., Croce C. M., et al. A program of microRNAs controls osteogenic lineage progression by targeting transcription factor Runx2. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(24):9863–9868. doi: 10.1073/pnas.1018493108. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

34. Montero A. Y., Okada Y., Tomita M., et al. Disruption of the fibroblast growth factor-2 gene results in decreased bone mass and bone formation. The Journal of Clinical Investigation. 2000;105(8):1085–1093. doi: 10.1172/jci8641. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

35. Buo A. M., Stains J. P. Gap junctional regulation of signal transduction in bone cells. FEBS Letters. 2014;588(8):1315–1321. doi: 10.1016/j.febslet.2014.01.025. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

36. Hamidouche Z. O., Fromigué O., Nuber U., et al. Autocrine fibroblast growth factor 18 mediates dexamethasone-induced osteogenic differentiation of murine mesenchymal stem cells. Journal of Cellular Physiology. 2010;224(2):509–515. doi: 10.1002/jcp.22152. [PubMed] [CrossRef] [Google Scholar]

37. Hassan M. Q., Maeda Y., Taipaleenmaki H., et al. miR-218 directs a Wnt signaling circuit to promote differentiation of osteoblasts and osteomimicry of metastatic cancer cells. The Journal of Biological Chemistry. 2012;287(50):42084–42092. doi: 10.1074/jbc.m112.377515. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

38. Tomé M., López-Romero P., Albo C., et al. miR-335 orchestrates cell proliferation, migration and differentiation in human mesenchymal stem cells. Cell Death and Differentiation. 2011;18(6):985–995. doi: 10.1038/cdd.2010.167. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

39. Flenniken A. M., Osborne L. R., Anderson N., et al. A Gja1 missense mutation in a mouse model of oculodentodigital dysplasia. Development. 2005;132(19):4375–4386. doi: 10.1242/dev.02011. [PubMed] [CrossRef] [Google Scholar]

40. Anderson H. C. Matrix vesicles and calcification. Current Rheumatology Reports. 2003;5(3):222–226. doi: 10.1007/s11926-003-0071-z. [PubMed] [CrossRef] [Google Scholar]

41. Yoshiko Y., Candeliere G. A., Maeda N., Aubin J. E. Osteoblast autonomous Pi regulation via Pit1 plays a role in bone mineralization. Molecular and Cellular Biology. 2007;27(12):4465–4474. doi: 10.1128/MCB.00104-07. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

42. Arana-Chavez V. E., Soares A. M. V., Katchburian E. Junctions between early developing osteoblasts of rat calvaria as revealed by freeze-fracture and ultrathin section electron microscopy. Archives of Histology and Cytology. 1995;58(3):285–292. doi: 10.1679/aohc.58.285. [PubMed] [CrossRef] [Google Scholar]

43. Glimcher M. J. The nature of the mineral phase in bone. In: Glimcher M. J., editor. Metabolic Bone Disease. San Diego, Calif, USA: Academic Press; 1998. pp. 23–50. [Google Scholar]

44. Boivin G., Meunier P. J. The degree of mineralization of bone tissue measured by computerized quantitative contact microradiography. Calcified Tissue International. 2002;70(6):503–511. doi: 10.1007/s00223-001-2048-0. [PubMed] [CrossRef] [Google Scholar]

45. Boivin G., Bala Y., Doublier A., et al. The role of mineralization and organic matrix in the microhardness of bone tissue from controls and osteoporotic patients. Bone. 2008;43(3):532–538. doi: 10.1016/j.bone.2008.05.024. [PubMed] [CrossRef] [Google Scholar]

46. Manolagas S. C. Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocrine Reviews. 2000;21(2):115–137. doi: 10.1210/er.21.2.115. [PubMed] [CrossRef] [Google Scholar]

47. Parfitt A. M. Bone-forming cells in clinical conditions. In: Hall B. K., editor. Bone, Vol 1: The Osteoblast and Osteocyte. Boca Raton, Fla, USA: Telford Press, CRC Press; 1990. pp. 351–429. [Google Scholar]

48. Jilka R. L., Weinstein R. S., Bellido T., Parfitt A. M., Manolagas S. C. Osteoblast programmed cell death (apoptosis): modulation by growth factors and cytokines. Journal of Bone and Mineral Research. 1998;13(5):793–802. doi: 10.1359/jbmr.1998.13.5.793. [PubMed] [CrossRef] [Google Scholar]

49. Cerri P. S. Osteoblasts engulf apoptotic bodies during alveolar bone formation in the rat maxilla. Anatomical Record A. 2005;286(1):833–840. doi: 10.1002/ar.a.20220. [PubMed] [CrossRef] [Google Scholar]

50. Miller S. C., de Saint-Georges L., Bowman B. M., Jee W. S. S. Bone lining cells: structure and function. Scanning Microscopy. 1989;3(3):953–961. [PubMed] [Google Scholar]

51. Aarden E. M., Burger E. H., Nijweide P. J. Function of osteocytes in bone. Journal of Cellular Biochemistry. 1994;55(3):287–299. doi: 10.1002/jcb.240550304. [PubMed] [CrossRef] [Google Scholar]

52. Donahue H. J., McLeod K. J., Rubin C. T., et al. Cell-to-cell communication in osteoblastic networks: cell line-dependent hormonal regulation of gap junction function. Journal of Bone and Mineral Research. 1995;10(6):881–889. [PubMed] [Google Scholar]

53. Mosley J. R. Osteoporosis and bone functional adaptation: mechanobiological regulation of bone architecture in growing and adult bone, a review. Journal of Rehabilitation Research and Development. 2000;37(2):189–199. [PubMed] [Google Scholar]

54. Franz-Odendaal T. A., Hall B. K., Witten P. E. Buried alive: how osteoblasts become osteocytes. Developmental Dynamics. 2006;235(1):176–190. doi: 10.1002/dvdy.20603. [PubMed] [CrossRef] [Google Scholar]

55. Rochefort G. Y., Pallu S., Benhamou C. L. Osteocyte: the unrecognized side of bone tissue. Osteoporosis International. 2010;21(9):1457–1469. doi: 10.1007/s00198-010-1194-5. [PubMed] [CrossRef] [Google Scholar]

56. Palumbo C., Palazzini S., Zaffe D., Marotti G. Osteocyte differentiation in the tibia of newborn rabbit: an ultrastructural study of the formation of cytoplasmic processes. Acta Anatomica. 1990;137(4):350–358. doi: 10.1159/000146907. [PubMed] [CrossRef] [Google Scholar]

57. Currey J. D. The many adaptations of bone. Journal of Biomechanics. 2003;36(10):1487–1495. doi: 10.1016/S0021-9290(03)00124-6. [PubMed] [CrossRef] [Google Scholar]

58. Schaffler M. B., Cheung W.-Y., Majeska R., Kennedy O. Osteocytes: master orchestrators of bone. Calcified Tissue International. 2014;94(1):5–24. doi: 10.1007/s00223-013-9790-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

59. Zhang K., Barragan-Adjemian C., Ye L., et al. E11/gp38 selective expression in osteocytes: regulation by mechanical strain and role in dendrite elongation. Molecular and Cellular Biology. 2006;26(12):4539–4552. doi: 10.1128/mcb.02120-05. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

60. Wetterwald A., Hofstetter W., Cecchini M. G., et al. Characterization and cloning of the E11 antigen, a marker expressed by rat osteoblasts and osteocytes. Bone. 1996;18(2):125–132. doi: 10.1016/8756-3282(95)00457-2. [PubMed] [CrossRef] [Google Scholar]

61. Schulze E., Witt M., Kasper M., Löwik C. W. G. M., Funk R. H. W. Immunohistochemical investigations on the differentiation marker protein E11 in rat calvaria, calvaria cell culture and the osteoblastic cell line ROS 17/2.8. Histochemistry and Cell Biology. 1999;111(1):61–69. doi: 10.1007/s004180050334. [PubMed] [CrossRef] [Google Scholar]

62. Mikuni-Takagaki Y., Kakai Y., Satoyoshi M., et al. Matrix mineralization and the differentiation of osteocyte-like cells in culture. Journal of Bone and Mineral Research. 1995;10(2):231–242. [PubMed] [Google Scholar]

63. Poole K. E. S., van Bezooijen R. L., Loveridge N., et al. Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation. The FASEB Journal. 2005;19(13):1842–1844. doi: 10.1096/fj.05-4221fje. [PubMed] [CrossRef] [Google Scholar]

64. Ubaidus S., Li M., Sultana S., et al. FGF23 is mainly synthesized by osteocytes in the regularly distributed osteocytic lacunar canalicular system established after physiological bone remodeling. Journal of Electron Microscopy. 2009;58(6):381–392. doi: 10.1093/jmicro/dfp032. [PubMed] [CrossRef] [Google Scholar]

65. Manolagas S. C. Choreography from the tomb: an emerging role of dying osteocytes in the purposeful, and perhaps not so purposeful, targeting of bone remodeling. BoneKEy-Osteovision. 2006;3(1):5–14. doi: 10.1138/20060193. [CrossRef] [Google Scholar]

66. Civitelli R., Lecanda F., Jørgensen N. R., Steinberg T. H. Intercellular junctions and cell-cell communication in bone. In: Bilezikan J. P., Raisz L., Rodan G. A., editors. Principles of Bone Biology. San Diego, Calif, USA: Academic Press; 2002. pp. 287–302. [Google Scholar]

67. Johnson L. C. The kinetics of skeletal remodeling. Birth Defects Original Article Series. 1966;2(1):66–142. [Google Scholar]

68. Mullender M. G., Van Der Meer D. D., Huiskes R., Lips P. Osteocyte density changes in aging and osteoporosis. Bone. 1996;18(2):109–113. doi: 10.1016/8756-3282(95)00444-0. [PubMed] [CrossRef] [Google Scholar]

69. Bonewald L. F. Osteocytes as dynamic multifunctional cells. Annals of the New York Academy of Sciences. 2007;1116:281–290. doi: 10.1196/annals.1402.018. [PubMed] [CrossRef] [Google Scholar]

70. Noble B. S., Stevens H., Loveridge N., Reeve J. Identification of apoptotic changes in osteocytes in normal and pathological human bone. Bone. 1997;20(3):273–282. doi: 10.1016/S8756-3282(96)00365-1. [PubMed] [CrossRef] [Google Scholar]

71. Aguirre J. I., Plotkin L. I., Stewart S. A., et al. Osteocyte apoptosis is induced by weightlessness in mice and precedes osteoclast recruitment and bone loss. Journal of Bone and Mineral Research. 2006;21(4):605–615. doi: 10.1359/jbmr.060107. [PubMed] [CrossRef] [Google Scholar]

72. Plotkin L. I. Apoptotic osteocytes and the control of targeted bone resorption. Current Osteoporosis Reports. 2014;12(1):121–126. doi: 10.1007/s11914-014-0194-3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

73. Bellido T. Osteocyte-driven bone remodeling. Calcified Tissue International. 2014;94(1):25–34. doi: 10.1007/s00223-013-9774-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

74. Boabaid F., Cerri P. S., Katchburian E. Apoptotic bone cells may be engulfed by osteoclasts during alveolar bone resorption in young rats. Tissue and Cell. 2001;33(4):318–325. doi: 10.1054/tice.2001.0179. [PubMed] [CrossRef] [Google Scholar]

75. Cerri P. S., Boabaid F., Katchburian E. Combined TUNEL and TRAP methods suggest that apoptotic bone cells are inside vacuoles of alveolar bone osteoclasts in young rats. Journal of Periodontal Research. 2003;38(2):223–226. doi: 10.1034/j.1600-0765.2003.02006.x. [PubMed] [CrossRef] [Google Scholar]

76. Faloni A. P. S., Sasso-Cerri E., Katchburian E., Cerri P. S. Decrease in the number and apoptosis of alveolar bone osteoclasts in estrogen-treated rats. Journal of Periodontal Research. 2007;42(3):193–201. doi: 10.1111/j.1600-0765.2006.00932.x. [PubMed] [CrossRef] [Google Scholar]

77. Tate M. L. K. ‘Whither flows the fluid in bone?’ An osteocyte's perspective. Journal of Biomechanics. 2003;36(10):1409–1424. doi: 10.1016/s0021-9290(03)00123-4. [PubMed] [CrossRef] [Google Scholar]

78. Xiao Z., Zhang S., Mahlios J., et al. Cilia-like structures and polycystin-1 in osteoblasts/osteocytes and associated abnormalities in skeletogenesis and Runx2 expression. The Journal of Biological Chemistry. 2006;281(41):30884–30895. doi: 10.1074/jbc.m604772200. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

79. Santos A., Bakker A. D., Zandieh-Doulabi B., de Blieck-Hogervorst J. M. A., Klein-Nulend J. Early activation of the β-catenin pathway in osteocytes is mediated by nitric oxide, phosphatidyl inositol-3 kinase/Akt, and focal adhesion kinase. Biochemical and Biophysical Research Communications. 2010;391(1):364–369. doi: 10.1016/j.bbrc.2009.11.064. [PubMed] [CrossRef] [Google Scholar]

80. Burger E. H., Klein-Nulend J. Mechanotransduction in bone—role of the lacuno-canalicular network. The FASEB Journal. 1999;13(8):S101–S112. [PubMed] [Google Scholar]

81. Boyce B. F., Hughes D. E., Wright K. R., Xing L., Dai A. Recent advances in bone biology provide insight into the pathogenesis of bone diseases. Laboratory Investigation. 1999;79(2):83–94. [PubMed] [Google Scholar]

82. Yavropoulou M. P., Yovos J. G. Osteoclastogenesis—current knowledge and future perspectives. Journal of Musculoskeletal Neuronal Interactions. 2008;8(3):204–216. [PubMed] [Google Scholar]

83. Takayanagi H. Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nature Reviews Immunology. 2007;7(4):292–304. doi: 10.1038/nri2062. [PubMed] [CrossRef] [Google Scholar]

84. Kim K., Lee S. H., Kim J. H., Choi Y., Kim N. NFATc1 induces osteoclast fusion via up-regulation of osteoclast fusion and increased bone formation. Nature Medicine. 2006;12(12):1403–1409. [PubMed] [Google Scholar]

85. Yoshida H., Hayashi S.-I., Kunisada T., et al. The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature. 1990;345(6274):442–444. doi: 10.1038/345442a0. [PubMed] [CrossRef] [Google Scholar]

86. Sodek J., McKee M. D. Molecular and cellular biology of alveolar bone. Periodontology 2000. 2000;24(1):99–126. doi: 10.1034/j.1600-0757.2000.2240106.x. [PubMed] [CrossRef] [Google Scholar]

87. Boyce B. F., Xing L. Functions of RANKL/RANK/OPG in bone modeling and remodeling. Archives of Biochemistry and Biophysics. 2008;473(2):139–146. doi: 10.1016/j.abb.2008.03.018. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

88. Longhini R., de Oliveira P. A., de Souza Faloni A. P., Sasso-Cerri E., Cerri P. S. Increased apoptosis in osteoclasts and decreased RANKL immunoexpression in periodontium of cimetidine-treated rats. Journal of Anatomy. 2013;222(2):239–247. doi: 10.1111/joa.12011. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

89. Longhini R., de Oliveira P. A., Sasso-Cerri E., Cerri P. S. Cimetidine reduces alveolar bone loss in induced periodontitis in rat molars. Journal of Periodontology. 2014;85(8):1115–1125. doi: 10.1902/jop.2013.130453. [PubMed] [CrossRef] [Google Scholar]

90. Matsumoto M., Kogawa M., Wada S., et al. Essential role of p38 mitogen-activated protein kinase in cathepsin K gene expression during osteoclastogenesis through association of NFATc1 and PU.1. The Journal of Biological Chemistry. 2004;279(44):45969–45979. doi: 10.1074/jbc.m408795200. [PubMed] [CrossRef] [Google Scholar]

91. Miyamoto T. The dendritic cell-specific transmembrane protein DC-STAMP is essential for osteoclast fusion and osteoclast bone-resorbing activity. Modern Rheumatology. 2006;16(6):341–342. doi: 10.1007/s10165-006-0524-0. [PubMed] [CrossRef] [Google Scholar]

92. Kobayashi Y., Udagawa N., Takahashi N. Action of RANKL and OPG for osteoclastogenesis. Critical Reviews in Eukaryotic Gene Expression. 2009;19(1):61–72. doi: 10.1615/critreveukargeneexpr.v19.i1.30. [PubMed] [CrossRef] [Google Scholar]

93. De Souza Faloni A. P., Schoenmaker T., Azari A., et al. Jaw and long bone marrows have a different osteoclastogenic potential. Calcified Tissue International. 2011;88(1):63–74. doi: 10.1007/s00223-010-9418-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

94. Mulari M., Vääräniemi J., Väänänen H. K. Intracellular membrane trafficking in bone resorbing osteoclasts. Microscopy Research and Technique. 2003;61(6):496–503. doi: 10.1002/jemt.10371. [PubMed] [CrossRef] [Google Scholar]

95. Arana-Chavez V. E., Bradaschia-Correa V. Clastic cells: mineralized tissue resorption in health and disease. The International Journal of Biochemistry & Cell Biology. 2009;41(3):446–450. doi: 10.1016/j.biocel.2008.09.007. [PubMed] [CrossRef] [Google Scholar]

96. Lakkakorpi P. T., Horton M. A., Helfrich M. H., Karhukorpi E.-K., Vaananen H. K. Vitronectin receptor has a role in bone resorption but does not mediate tight sealing zone attachment of osteoclasts to the bone surface. Journal of Cell Biology. 1991;115(4):1179–1186. doi: 10.1083/jcb.115.4.1179. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

97. Saltel F., Destaing O., Bard F., Eichert D., Jurdic P. Apatite-mediated actin dynamics in resorbing osteoclasts. Molecular Biology of the Cell. 2004;15(12):5231–5241. doi: 10.1091/mbc.e04-06-0522. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

98. Luxenburg C., Geblinger D., Klein E., et al. The architecture of the adhesive apparatus of cultured osteoclasts: from podosome formation to sealing zone assembly. PLoS ONE. 2007;2(1, article e179) doi: 10.1371/journal.pone.0000179. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

99. Chabadel A., Bañon-Rodríguez I., Cluet D., et al. CD44 and β3 integrin organize two functionally distinct actin-based domains in osteoclasts. Molecular Biology of the Cell. 2007;18(12):4899–4910. doi: 10.1091/mbc.E07-04-0378. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

100. Kornak U., Kasper D., Bösl M. R., et al. Loss of the CIC-7 chloride channel leads to osteopetrosis in mice and man. Cell. 2001;104(2):205–215. doi: 10.1016/s0092-8674(01)00206-9. [PubMed] [CrossRef] [Google Scholar]

101. Graves A. R., Curran P. K., Smith C. L., Mindell J. A. The Cl−/H+ antiporter ClC-7 is the primary chloride permeation pathway in lysosomes. Nature. 2008;453(7196):788–792. doi: 10.1038/nature06907. [PubMed] [CrossRef] [Google Scholar]

102. Yamaza T., Goto T., Kamiya T., Kobayashi Y., Sakai H., Tanaka T. Study of immunoelectron microscopic localization of cathepsin K in osteoclasts and other bone cells in the mouse femur. Bone. 1998;23(6):499–509. doi: 10.1016/S8756-3282(98)00138-0. [PubMed] [CrossRef] [Google Scholar]

103. Ljusberg J., Wang Y., Lång P., et al. Proteolytic excision of a repressive loop domain in tartrate-resistant acid phosphatase by cathepsin K in osteoclasts. The Journal of Biological Chemistry. 2005;280(31):28370–28381. doi: 10.1074/jbc.m502469200. [PubMed] [CrossRef] [Google Scholar]

104. de Souza Faloni A. P., Sasso-Cerri E., Rocha F. R. G., Katchburian E., Cerri P. S. Structural and functional changes in the alveolar bone osteoclasts of estrogen-treated rats. Journal of Anatomy. 2012;220(1):77–85. doi: 10.1111/j.1469-7580.2011.01449.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

105. Feng X., McDonald J. M. Disorders of bone remodeling. Annual Review of Pathology: Mechanisms of Disease. 2011;6:121–145. doi: 10.1146/annurev-pathol-011110-130203. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

106. Seeman E., Delmas P. D. Bone quality—the material and structural basis of bone strength and fragility. The New England Journal of Medicine. 2006;354(21):2250–2261. doi: 10.1056/nejmra053077. [PubMed] [CrossRef] [Google Scholar]

107. Kimura S., Nagai A., Onitsuka T., et al. Induction of experimental periodontitis in mice with Porphyromonas gingivalis-adhered ligatures. Journal of Periodontology. 2000;71(7):1167–1173. doi: 10.1902/jop.2000.71.7.1167. [PubMed] [CrossRef] [Google Scholar]

108. Hasturk H., Kantarci A., Ebrahimi N., et al. Topical H2 antagonist prevents periodontitis in a rabbit model. Infection and Immunity. 2006;74(4):2402–2414. doi: 10.1128/iai.74.4.2402-2414.2006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

109. Katz J., Yang Q.-B., Zhang P., et al. Hydrolysis of epithelial junctional proteins by Porphyromonas gingivalis gingipains. Infection and Immunity. 2002;70(5):2512–2518. doi: 10.1128/iai.70.5.2512-2518.2002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

110. Li C. H., Amar S. Morphometric, histomorphometric, and microcomputed tomographic analysis of periodontal inflammatory lesions in a murine model. Journal of Periodontology. 2007;78(6):1120–1128. doi: 10.1902/jop.2007.060320. [PubMed] [CrossRef] [Google Scholar]

111. Jain N., Jain G. K., Javed S., et al. Recent approaches for the treatment of periodontitis. Drug Discovery Today. 2008;13(21-22):932–943. doi: 10.1016/j.drudis.2008.07.010. [PubMed] [CrossRef] [Google Scholar]

112. Charles J. F., Aliprantis A. O. Osteoclasts: more than ‘bone eaters’ Trends in Molecular Medicine. 2014;20(8):449–459. doi: 10.1016/j.molmed.2014.06.001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

113. Boskey A. L., Spevak L., Paschalis E., Doty S. B., McKee M. D. Osteopontin deficiency increases mineral content and mineral crystallinity in mouse bone. Calcified Tissue International. 2002;71(2):145–154. doi: 10.1007/s00223-001-1121-z. [PubMed] [CrossRef] [Google Scholar]

114. Aszódi A., Bateman J. F., Gustafsson E., Boot-Handford R., Fässler R. Mammalian skeletogenesis and extracellular matrix: what can we learn from knockout mice? Cell Structure and Function. 2000;25(2):73–84. doi: 10.1247/csf.25.73. [PubMed] [CrossRef] [Google Scholar]

115. Christoffersen J., Landis W. J. A contribution with review to the description of mineralization of bone and other calcified tissues in vivo. Anatomical Record. 1991;230(4):435–450. doi: 10.1002/ar.1092300402. [PubMed] [CrossRef] [Google Scholar]

116. Yagami K., Suh J.-Y., Enomoto-Iwamoto M., et al. Matrix GLA protein is a developmental regulator of chondrocyte mineralization and, when constitutively expressed, blocks endochondral and intramembranous ossification in the limb. The Journal of Cell Biology. 1999;147(5):1097–1108. doi: 10.1083/jcb.147.5.1097. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

117. Green J., Schotland S., Stauber D. J., Kleeman C. R., Clemens T. L. Cell-matrix interaction in bone: type I collagen modulates signal transduction in osteoblast-like cells. The American Journal of Physiology—Cell Physiology. 1995;268(5):C1090–C1103. [PubMed] [Google Scholar]

118. Sornay-Rendu E., Boutroy S., Munoz F., Delmas P. D. Alterations of cortical and trabecular architecture are associated with fractures in postmenopausal women, partially independent of decreased BMD measured by DXA: the OF-ELY study. Journal of Bone and Mineral Research. 2007;22(3):425–433. doi: 10.1359/jbmr.061206. [PubMed] [CrossRef] [Google Scholar]

119. Vashishth D. Collagen glycation and its role in fracture properties of bone. Journal of Musculoskeletal Neuronal Interactions. 2005;5, article 316 [PubMed] [Google Scholar]

120. Viguet-Carrin S., Garnero P., Delmas P. D. The role of collagen in bone strength. Osteoporosis International. 2006;17(3):319–336. doi: 10.1007/s00198-005-2035-9. [PubMed] [CrossRef] [Google Scholar]

121. Saito M., Fujii K., Soshi S., Tanaka T. Reductions in degree of mineralization and enzymatic collagen cross-links and increases in glycation-induced pentosidine in the femoral neck cortex in cases of femoral neck fracture. Osteoporosis International. 2006;17(7):986–995. doi: 10.1007/s00198-006-0087-0. [PubMed] [CrossRef] [Google Scholar]

122. Tang S. Y., Zeenath U., Vashishth D. Effects of non-enzymatic glycation on cancellous bone fragility. Bone. 2007;40(4):1144–1151. doi: 10.1016/j.bone.2006.12.056. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

123. Owen M., Shetlar M. R. Uptake of 3H-glucosamine by osteoclasts. Nature. 1968;220(5174):1335–1336. doi: 10.1038/2201335a0. [PubMed] [CrossRef] [Google Scholar]

124. Johnston C. C., Smith D. M., Severson A. R. Bone resorption and matrix hexosamine labeling. In: Talmage R. V., Munson P. L., editors. Calcium, Parathyroid Hormone and the Calcitonins. Amsterdam, The Netherlands: Excerpta Medica Foundation; 1972. pp. 327–337. [Google Scholar]

125. Severson A. R., Rothberg P. F., Pratt R. M., Goggins J. F. Effect of parathyroid hormone on the incorporation of 3H—glucosamine into hyaluronic acid in bone organ culture. Endocrinology. 1973;92(4):1282–1285. doi: 10.1210/endo-92-4-1282. [PubMed] [CrossRef] [Google Scholar]

126. Luben R. A., Goggins J. F., Raisz L. G. Stimulation by parathyroid hormone of bone hyaluronate synthesis in organ culture. Endocrinology. 1974;94(3):737–745. doi: 10.1210/endo-94-3-737. [PubMed] [CrossRef] [Google Scholar]

127. Prince C. W. Roles of hyaluronan in bone resorption. BMC Musculoskeletal Disorders. 2004;5, article 12 doi: 10.1186/1471-2474-5-12. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

129. Zimmerman D., Jin F., Leboy P., Hardy S., Damsky C. Impaired bone formation in transgenic mice resulting from altered integrin function in osteoblasts. Developmental Biology. 2000;220(1):2–15. doi: 10.1006/dbio.2000.9633. [PubMed] [CrossRef] [Google Scholar]

130. Damsky C. H. Extracellular matrix-integrin interactions in osteoblast function and tissue remodeling. Bone. 1999;25(1):95–96. doi: 10.1016/S8756-3282(99)00106-4. [PubMed] [CrossRef] [Google Scholar]

131. Marie P. J. Role of N-cadherin in bone formation. Journal of Cellular Physiology. 2002;190(3):297–305. doi: 10.1002/jcp.10073. [PubMed] [CrossRef] [Google Scholar]

132. Helfrich M. H., Stenbeck G., Nesbitt M. A., et al. Integrins and adhesion molecules. In: Bilezikan J. P., Raisz L. G., Martin T. J., editors. Principles of Bone Biology. San Diego, Calif, USA: Academic Press, Elsevier; 2008. pp. 385–424. [Google Scholar]

133. Helfrich M. H., Nesbitt S. A., Dorey E. L., Horton M. A. Rat osteoclasts adhere to a wide range of RGD (Arg-Gly-Asp) peptide-containing proteins, including the bone sialoproteins and fibronectin, via a β3 integrin. Journal of Bone and Mineral Research. 1992;7(3):335–343. [PubMed] [Google Scholar]

134. Helfrich M. H., Nesbitt S. A., Lakkakorpi P. T., et al. β1 integrins and osteoclast function: involvement in collagen recognition and bone resorption. Bone. 1996;19(4):317–328. doi: 10.1016/s8756-3282(96)00223-2. [PubMed] [CrossRef] [Google Scholar]

135. Mbalaviele G., Chan S. S., Civitelli R. Cell-cell adhesion and signaling through cadherins: connecting bone cells in their microenvironment. Journal of Bone and Mineral Research. 2006;21(12):1821–1827. doi: 10.1359/jbmr.060811. [PubMed] [CrossRef] [Google Scholar]

136. Wang Y., McNamara L. M., Schaffler M. B., Weinbaum S. A model for the role of integrins in flow induced mechanotransduction in osteocytes. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(40):15941–15946. doi: 10.1073/pnas.0707246104. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

137. McNamara L. M., Majeska R. J., Weinbaum S., Friedrich V., Schaffler M. B. Attachment of osteocyte cell processes to the bone matrix. Anatomical Record. 2009;292(3):355–363. doi: 10.1002/ar.20869. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

138. Litzenberger J. B., Kim J.-B., Tummala P., Jacobs C. R. β1 Integrins mediate mechanosensitive signaling pathways in Osteocytes. Calcified Tissue International. 2010;86(4):325–332. doi: 10.1007/s00223-010-9343-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

139. You L.-D., Weinbaum S., Cowin S. C., Schaffler M. B. Ultrastructure of the osteocyte process and its pericellular matrix. Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology. 2004;278(2):505–513. [PubMed] [Google Scholar]

140. Noonan K. J., Stevens J. W., Tammi R., Tammi M., Hernandez J. A., Midura R. J. Spatial distribution of CD44 and hyaluronan in the proximal tibia of the growing rat. Journal of Orthopaedic Research. 1996;14(4):573–581. doi: 10.1002/jor.1100140411. [PubMed] [CrossRef] [Google Scholar]

141. Thompson W. R., Modla S., Grindel B. J., et al. Perlecan/Hspg2 deficiency alters the pericellular space of the lacunocanalicular system surrounding osteocytic processes in cortical bone. Journal of Bone and Mineral Research. 2011;26(3):618–629. doi: 10.1002/jbmr.236. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

142. Kamioka H., Kameo Y., Imai Y., et al. Microscale fluid flow analysis in a human osteocyte canaliculus using a realistic high-resolution image-based three-dimensional model. Integrative Biology. 2012;4(10):1198–1206. doi: 10.1039/c2ib20092a. [PubMed] [CrossRef] [Google Scholar]

143. Miyauchi A., Gotoh M., Kamioka H., et al. αvβ3 Integrin ligands enhance volume-sensitive calcium influx in mechanically stretched osteocytes. Journal of Bone and Mineral Metabolism. 2006;24(6):498–504. doi: 10.1007/s00774-006-0716-x. [PubMed] [CrossRef] [Google Scholar]

144. Piekarski K., Munro M. Transport mechanism operating between blood supply and osteocytes in long bones. Nature. 1977;269(5623):80–82. doi: 10.1038/269080a0. [PubMed] [CrossRef] [Google Scholar]

145. Weinbaum S., Cowin S. C., Zeng Y. A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. Journal of Biomechanics. 1994;27(3):339–360. doi: 10.1016/0021-9290(94)90010-8. [PubMed] [CrossRef] [Google Scholar]

146. Negishi-Koga T., Takayanagi H. Bone cell communication factors and Semaphorins. BoneKEy Reports. 2012;1, article 183 doi: 10.1038/bonekey.2012.183. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

147. Calvi L. M., Sims N. A., Hunzelman J. L., et al. Activated parathyroid hormone/parathyroid hormone-related protein receptor in osteoblastic cells differentially affects cortical and trabecular bone. The Journal of Clinical Investigation. 2001;107(3):277–286. doi: 10.1172/jci11296. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

148. Miao D., Scutt A. Recruitment, augmentation and apoptosis of rat osteoclasts in 1,25-(OH)2D3 response to short-term treatment with 1,25-dihydroxyvitamin D3 in vivo. BMC Musculoskeletal Disorders. 2002;7:3–16. [PMC free article] [PubMed] [Google Scholar]

149. Zaidi M., Inzerillo A. M., Moonga B. S., Bevis P. J. R., Huang C. L.-H. Forty years of calcitonin—where are we now? A tribute to the work of Iain Macintyre, FRS. Bone. 2002;30(5):655–663. doi: 10.1016/s8756-3282(02)00688-9. [PubMed] [CrossRef] [Google Scholar]

150. Vanderschueren D., Vandenput L., Boonen S., Lindberg M. K., Bouillon R., Ohlsson C. Androgens and bone. Endocrine Reviews. 2004;25(3):389–425. doi: 10.1210/er.2003-0003. [PubMed] [CrossRef] [Google Scholar]

151. Tomkinson A., Reeve J., Shaw R. W., Noble B. S. The death of osteocytes via apoptosis accompanies estrogen withdrawal in human bone. Endocrine Society Journals and Publications. 1997;82:3128–3135. [PubMed] [Google Scholar]

152. Kousteni S., Chen J.-R., Bellido T., et al. Reversal of bone loss in mice by nongenotropic signaling of sex steroids. Science. 2002;298(5594):843–846. doi: 10.1126/science.1074935. [PubMed] [CrossRef] [Google Scholar]

153. Emerton K. B., Hu B., Woo A. A., et al. Osteocyte apoptosis and control of bone resorption following ovariectomy in mice. Bone. 2010;46(3):577–583. doi: 10.1016/j.bone.2009.11.006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

154. Hughes D. E., Dai A., Tiffee J. C., Li H. H., Munoy G. R., Boyce B. F. Estrogen promotes apoptosis of murine osteoclasts mediated by TGF-β . Nature Medicine. 1996;2(10):1132–1136. doi: 10.1038/nm1096-1132. [PubMed] [CrossRef] [Google Scholar]

155. Hofbauer L. C., Heufelder A. E. Role of receptor activator of nuclear factor-κB ligand and osteoprotegerin in bone cell biology. Journal of Molecular Medicine. 2001;79(5-6):243–253. doi: 10.1007/s001090100226. [PubMed] [CrossRef] [Google Scholar]

156. Kawamoto S., Ejiri S., Nagaoka E., Ozawa H. Effects of oestrogen deficiency on osteoclastogenesis in the rat periodontium. Archives of Oral Biology. 2002;47(1):67–73. doi: 10.1016/s0003-9969(01)00086-3. [PubMed] [CrossRef] [Google Scholar]

157. Eghbali-Fatourechi G., Khosla S., Sanyal A., Boyle W. J., Lacey D. L., Riggs B. L. Role of RANK ligand in mediating increased bone resorption in early postmenopausal women. The Journal of Clinical Investigation. 2003;111(8):1221–1230. doi: 10.1172/jci200317215. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

158. Väänänen K. Mechanism of osteoclast mediated bone resorption—rationale for the design of new therapeutics. Advanced Drug Delivery Reviews. 2005;57(7):959–971. doi: 10.1016/j.addr.2004.12.018. [PubMed] [CrossRef] [Google Scholar]

159. Robinson L. J., Yaroslavskiy B. B., Griswold R. D., et al. Estrogen inhibits RANKL-stimulated osteoclastic differentiation of human monocytes through estrogen and RANKL-regulated interaction of estrogen receptor-α with BCAR1 and Traf6. Experimental Cell Research. 2009;315(7):1287–1301. doi: 10.1016/j.yexcr.2009.01.014. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

160. Pacifici R. Estrogen, cytokines, and pathogenesis of postmenopausal osteoporosis. Journal of Bone and Mineral Research. 1996;11(8):1043–1051. [PubMed] [Google Scholar]

161. Cenci S., Weitzmann M. N., Roggia C., et al. Estrogen deficiency induces bone loss by enhancing T-cell production of TNF-α . The Journal of Clinical Investigation. 2000;106(10):1229–1237. doi: 10.1172/jci11066. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

162. Oursler M. J., Osdoby P., Pyfferoen J., Riggs B. L., Spelsberg T. C. Avian osteoclasts as estrogen target cells. Proceedings of the National Academy of Sciences of the United States of America. 1991;88(15):6613–6617. doi: 10.1073/pnas.88.15.6613. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

163. Cruzoé-Souza M., Sasso-Cerri E., Cerri P. S. Immunohistochemical detection of estrogen receptor β in alveolar bone cells of estradiol-treated female rats: possible direct action of estrogen on osteoclast life span. Journal of Anatomy. 2009;215(6):673–681. doi: 10.1111/j.1469-7580.2009.01158.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

164. Martin-Millan M., Almeida M., Ambrogini E., et al. The estrogen receptor-α in osteoclasts mediates the protective effects of estrogens on cancellous but not cortical bone. Molecular Endocrinology. 2010;24(2):323–334. doi: 10.1210/me.2009-0354. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

165. Frost H. M. Intermediary Organization of the Skeleton. Boca Raton, Fla, USA: CRC Press; 1986. [Google Scholar]

166. Elefteriou F. Regulation of bone remodeling by the central and peripheral nervous system. Archives of Biochemistry and Biophysics. 2008;473(2):231–236. doi: 10.1016/j.abb.2008.03.016. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

167. Nakashima T., Hayashi M., Fukunaga T., et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nature Medicine. 2011;17(10):1231–1234. doi: 10.1038/nm.2452. [PubMed] [CrossRef] [Google Scholar]

168. Xiong J., Onal M., Jilka R. L., Weinstein R. S., Manolagas S. C., O'Brien C. A. Matrix-embedded cells control osteoclast formation. Nature Medicine. 2011;17(10):1235–1241. doi: 10.1038/nm.2448. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

169. Howard G. A., Bottemiller B. L., Turner R. T., Rader J. I., Baylink D. J. Parathyroid hormone stimulates bone formation and resorption in organ culture: evidence for a coupling mechanism. Proceedings of the National Academy of Sciences of the United States of America. 1981;78(5):3204–3208. doi: 10.1073/pnas.78.5.3204. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

170. Linkhart T. A., Mohan S., Baylink D. J. Growth factors for bone growth and repair: IGF, TGF beta and BMP. Bone. 1996;19(1) doi: 10.1016/s8756-3282(96)00138-x. [PubMed] [CrossRef] [Google Scholar]

171. Segovia-Silvestre T., Neutzsky-Wulff A. V., Sorensen M. G., et al. Advances in osteoclast biology resulting from the study of osteopetrotic mutations. Human Genetics. 2009;124(6):561–577. doi: 10.1007/s00439-008-0583-8. [PubMed] [CrossRef] [Google Scholar]

172. Negishi-Koga T., Shinohara M., Komatsu N., et al. Suppression of bone formation by osteoclastic expression of semaphorin 4D. Nature Medicine. 2011;17(11):1473–1480. doi: 10.1038/nm.2489. [PubMed] [CrossRef] [Google Scholar]

173. Suzuki K., Kumanogoh A., Kikutani H. Semaphorins and their receptors in immune cell interactions. Nature Immunology. 2008;9(1):17–23. doi: 10.1038/ni1553. [PubMed] [CrossRef] [Google Scholar]

174. Delorme G., Saltel F., Bonnelye E., Jurdic P., Machuca-Gayet I. Expression and function of semaphorin 7A in bone cells. Biology of the Cell. 2005;97(7):589–597. doi: 10.1042/BC20040103. [PubMed] [CrossRef] [Google Scholar]

175. Sutton A. L. M., Zhang X., Dowd D. R., Kharode Y. P., Komm B. S., MacDonald P. N. Semaphorin 3B is a 1,25-dihydroxyvitamin D3-induced gene in osteoblasts that promotes osteoclastogenesis and induces osteopenia in mice. Molecular Endocrinology. 2008;22(6):1370–1381. doi: 10.1210/me.2007-0363. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

176. Hughes A., Kleine-Albers J., Helfrich M. H., Ralston S. H., Rogers M. J. A Class III semaphorin (Sema3e) inhibits mouse osteoblast migration and decreases osteoclast formation in vitro. Calcified Tissue International. 2012;90(2):151–162. doi: 10.1007/s00223-011-9560-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

177. Hayashi M., Nakashima T., Taniguchi M., Kodama T., Kumanogoh A., Takayanagi H. Osteoprotection by semaphorin 3A. Nature. 2012;485(7396):69–74. doi: 10.1038/nature11000. [PubMed] [CrossRef] [Google Scholar]

178. Zhao C., Irie N., Takada Y., et al. Bidirectional ephrinB2-EphB4 signaling controls bone homeostasis. Cell Metabolism. 2006;4(2):111–121. doi: 10.1016/j.cmet.2006.05.012. [PubMed] [CrossRef] [Google Scholar]

179. Allan E. H., Häusler K. D., Wei T., et al. EphrinB2 regulation by PTH and PTHrP revealed by molecular profiling in differentiating osteoblasts. Journal of Bone and Mineral Research. 2008;23(8):1170–1181. doi: 10.1359/jbmr.080324. [PubMed] [CrossRef] [Google Scholar]

180. Pederson L., Ruan M., Westendorf J. J., Khosla S., Oursler M. J. Regulation of bone formation by osteoclasts involves Wnt/BMP signaling and the chemokine sphingosine-1-phosphate. Proceedings of the National Academy of Sciences of the United States of America. 2008;105(52):20764–20769. doi: 10.1073/pnas.0805133106. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

181. Klein-Nulend J., Semeins C. M., Ajubi N. E., Nijweide P. J., Burger E. H. Pulsating fluid flow increases nitric oxide (NO) synthesis by osteocytes but not periosteal fibroblasts—correlation with prostaglandin upregulation. Biochemical and Biophysical Research Communications. 1995;217(2):640–648. doi: 10.1006/bbrc.1995.2822. [PubMed] [CrossRef] [Google Scholar]

182. Cherian P. P., Siller-Jackson A. J., Gu S., et al. Mechanical strain opens connexin 43 hemichannels in osteocytes: a novel mechanism for the release of prostaglandin. Molecular Biology of the Cell. 2005;16(7):3100–3106. doi: 10.1091/mbc.e04-10-0912. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

183. Genetos D. C., Kephart C. J., Zhang Y., Yellowley C. E., Donahue H. J. Oscillating fluid flow activation of gap junction hemichannels induces ATP release from MLO-Y4 osteocytes. Journal of Cellular Physiology. 2007;212(1):207–214. doi: 10.1002/jcp.21021. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

184. Lu X. L., Huo B., Park M., Guo X. E. Calcium response in osteocytic networks under steady and oscillatory fluid flow. Bone. 2012;51(3):466–473. doi: 10.1016/j.bone.2012.05.021. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

185. Robling A. G., Bellido T., Turner C. H. Mechanical stimulation in vivo reduces osteocyte expression of sclerostin. Journal of Musculoskeletal Neuronal Interactions. 2006;6(4):p. 354. [PubMed] [Google Scholar]

186. Robling A. G., Niziolek P. J., Baldridge L. A., et al. Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. Journal of Biological Chemistry. 2008;283(9):5866–5875. doi: 10.1074/jbc.m705092200. [PubMed] [CrossRef] [Google Scholar]

187. Gaudio A., Pennisi P., Bratengeier C., et al. Increased sclerostin serum levels associated with bone formation and resorption markers in patients with immobilization-induced bone loss. The Journal of Clinical Endocrinology & Metabolism. 2010;95(5):2248–2253. doi: 10.1210/jc.2010-0067. [PubMed] [CrossRef] [Google Scholar]

188. Moriishi T., Fukuyama R., Ito M., et al. Osteocyte network; a negative regulatory system for bone mass augmented by the induction of Rankl in osteoblasts and sost in osteocytes at unloading. PLoS ONE. 2012;7(6) doi: 10.1371/journal.pone.0040143.e40143 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

189. Bonewald L. F., Johnson M. L. Osteocytes, mechanosensing and Wnt signaling. Bone. 2008;42(4):606–615. doi: 10.1016/j.bone.2007.12.224. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

190. Verborgt O., Gibson G. J., Schaffler M. B. Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue in vivo. Journal of Bone and Mineral Research. 2000;15(1):60–67. doi: 10.1359/jbmr.2000.15.1.60. [PubMed] [CrossRef] [Google Scholar]

191. Cardoso L., Herman B. C., Verborgt O., Laudier D., Majeska R. J., Schaffler M. B. Osteocyte apoptosis controls activation of intracortical resorption in response to bone fatigue. Journal of Bone and Mineral Research. 2009;24(4):597–605. doi: 10.1359/jbmr.081210. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

192. Taniwaki N. N., Katchburian E. Ultrastructural and lanthanum tracer examination of vapidly resorbing rat alveolar bone suggests that osteoclasts internalize dying bone cells. Cell and Tissue Research. 1998;293(1):173–176. doi: 10.1007/s004410051109. [PubMed] [CrossRef] [Google Scholar]

193. Gu G., Mulari M., Peng Z., Hentunen T. A., Väänänen H. K. Death of osteocytes turns off the inhibition of osteoclasts and triggers local bone resorption. Biochemical and Biophysical Research Communications. 2005;335(4):1095–1101. doi: 10.1016/j.bbrc.2005.06.211. [PubMed] [CrossRef] [Google Scholar]

194. Kennedy O. D., Herman B. C., Laudier D. M., Majeska R. J., Sun H. B., Schaffler M. B. Activation of resorption in fatigue-loaded bone involves both apoptosis and active pro-osteoclastogenic signaling by distinct osteocyte populations. Bone. 2012;50(5):1115–1122. doi: 10.1016/j.bone.2012.01.025. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

195. Wu A. C., Morrison N. A., Kelly W. L., Forwood M. R. MCP-1 expression is specifically regulated during activation of skeletal repair and remodeling. Calcified Tissue International. 2013;92(6):566–575. doi: 10.1007/s00223-013-9718-6. [PubMed] [CrossRef] [Google Scholar]

196. Bivi N., Condon K. W., Allen M. R., et al. Cell autonomous requirement of connexin 43 for osteocyte survival: consequences for endocortical resorption and periosteal bone formation. Journal of Bone and Mineral Research. 2012;27(2):374–389. doi: 10.1002/jbmr.548. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

197. Plotkin L. I. Connexin 43 hemichannels and intracellular signaling in bone cells. Frontiers in Physiology. 2014;5, article 131 doi: 10.3389/fphys.2014.00131. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

198. Yang J., Shah R., Robling A. G., et al. HMGB1 is a bone-active cytokine. Journal of Cellular Physiology. 2008;214(3):730–739. doi: 10.1002/jcp.21268. [PubMed] [CrossRef] [Google Scholar]

199. Klune J. R., Dhupar R., Cardinal J., Billiar T. R., Tsung A. HMGB1: endogenous danger signaling. Molecular Medicine. 2008;14(7-8):476–484. doi: 10.2119/2008-00034.klune. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

200. Zhou Z., Han J.-Y., Xi C.-X., et al. HMGB1 regulates RANKL-induced osteoclastogenesis in a manner dependent on RAGE. Journal of Bone and Mineral Research. 2008;23(7):1084–1096. doi: 10.1359/jbmr.080234. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

201. Harris S. E., MacDougall M., Horn D., et al. Meox2Cre-mediated disruption of CSF-1 leads to osteopetrosis and osteocyte defects. Bone. 2012;50(1):42–53. doi: 10.1016/j.bone.2011.09.038. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

202. Guntur A. R., Rosen C. J. Bone as an endocrine organ. Endocrine Practice. 2012;18(5):758–762. doi: 10.4158/ep12141.ra. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

203. Karsenty G., Ferron M. The contribution of bone to whole-organism physiology. Nature. 2012;481(7381):314–320. doi: 10.1038/nature10763. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

204. Ferron M., Hinoi E., Karsenty G., Ducy P. Osteocalcin differentially regulates β cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proceedings of the National Academy of Sciences of the United States of America. 2008;105(13):5266–5270. doi: 10.1073/pnas.0711119105. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

205. Confavreux C. B. Bone: from a reservoir of minerals to a regulator of energy metabolism. Kidney International. 2011;79(121):S14–S19. doi: 10.1038/ki.2011.25. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

206. Oury F., Sumara G., Sumara O., et al. Endocrine regulation of male fertility by the skeleton. Cell. 2011;144(5):796–809. doi: 10.1016/j.cell.2011.02.004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

207. Oury F., Khrimian L., Denny C. A., et al. Maternal and offspring pools of osteocalcin influence brain development and functions. Cell. 2013;155(1):228–241. doi: 10.1016/j.cell.2013.08.042. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

208. Quarles L. D. Endocrine functions of bone in mineral metabolism regulation. The Journal of Clinical Investigation. 2008;118(12):3820–3828. doi: 10.1172/jci36479. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

209. Martin A., Liu S., David V., et al. Bone proteins PHEX and DMP1 regulate fibroblastic growth factor Fgf23 expression in osteocytes through a common pathway involving FGF receptor (FGFR) signaling. The FASEB Journal. 2011;25(8):2551–2562. doi: 10.1096/fj.10-177816. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

210. Sato M., Asada N., Kawano Y., et al. Osteocytes regulate primary lymphoid organs and fat metabolism. Cell Metabolism. 2013;18(5):749–758. doi: 10.1016/j.cmet.2013.09.014. [PubMed] [CrossRef] [Google Scholar]

211. Walsh M. C., Kim N., Kadono Y., et al. Osteoimmunology: interplay between the immune system and bone metabolism. Annual Review of Immunology. 2006;24:33–63. doi: 10.1146/annurev.immunol.24.021605.090646. [PubMed] [CrossRef] [Google Scholar]

Which of the following labels matches Osteocyte?

Answer and Explanation: D) mature bone cell. Osteocytes are mature osteoblasts that get trapped in the new bone being created.

Which of the following best matches Osteocyte a stem cell B dissolves matrix C mature bone cell D secretes organic matrix?

Answer and Explanation: Which of the following labels best matches osteocyte? C) mature bone cell: Osteocytes are generated formed from osteoblasts. Osteoblasts secrete the bone matrix and osteocytes are the cells present in this matrix within a cavity called lacunae.

Do osteocytes dissolve matrix?

These cells also communicate with one another and with osteocytes by gap junctions. Osteocytes are mature bone cells, differentiated from osteoblasts, which are responsible for maintaining the bone matrix. They can synthesize and resorb (break down) the matrix to maintain homeostasis.

What cell dissolves bone matrix?

Osteoclasts Resorb Bone The area of the osteoclast next to bone forms a “ruffled border” consisting of multiple infoldings of the osteoclast cell membrane. It secretes acid and proteases across the ruffled border, and these dissolve the mineral of bone and destroy the organic matrix (see Figure 9.8. 4).