Quais são os números racionais entre 1 e 2?

Sabemos que um número é considerado racional se puder ser representado em forma de fração. Portanto, falar em fração é o mesmo que falar em número racional.

Entre dois números naturais consecutivos existem infinitas frações, por exemplo: entre 2 e 3 existem 21/10, 5/2, 29/10 e assim por diante. Para praticarmos com os alunos a ordem das frações em uma reta numerada, há uma competição muito divertida que faz com que os alunos fiquem a todo o momento envolvidos com a aula.

Essa competição pode receber o nome de: Intercalando racionais.

Objetivo: Relacionar fração com número natural, observando a característica de cada uma delas.

Público alvo: 5º ano ou 6º ano do ensino fundamental.

Tempo estimado para realização completa dessa atividade: 5 a 6 aulas.

Desenvolvimento da competição:

Primeiro momento: divida a turma em duas equipes. Cada equipe deve escolher uma fração que esteja entre os números naturais 0 e 10. Depois de escolher essa fração, o objetivo é descobrir com o menor número de perguntas possíveis, entre quais números naturais consecutivos está a fração que o outro grupo escolheu.
É importante destacar que as perguntas devem ser do tipo: a fração está entre 5 e 9? E as respostas devem “ser: “sim” ou “não”.
A equipe que acertar o intervalo (entre quais números naturais se encontra a fração) ganha um ponto. Se acertar a fração ganha mais um.

Segundo momento: esse segundo momento é uma evolução da competição onde os participantes deverão dar intervalos menores, ou seja, terão que dizer se a fração escolhida estará entre quais outras frações (está entre 1/2 e 3/4?). Essa segunda etapa é um momento de bastante discussão entre eles, pois com certeza cada grupo não irá escolher frações óbvias para dificultar para o outro grupo. Assim, os grupos terão que construir estratégias mais eficientes e com mais embasamentos matemáticos.

Terceiro momento: Depois das estratégias montadas, o professor deve registrá-las e discutir com os alunos o que é valido e o que não é valido. Para auxiliar essa discussão veja alguns pontos que podem ser abordados:
• É mais fácil operar com frações com denominadores 10, 100, 1000,...?
• Tem que identificar em uma reta numerada uma fração com intervalo menor que 1.
• Quantas frações são encontradas em um intervalo de números naturais?
Com essa conversa com os alunos, após a competição, eles irão compreender como identificar a posição de uma fração em uma reta numerada.

Avaliação: para que o professor tenha uma visão melhor de como cada aluno absorveu o conteúdo monte grupos menores e proponha que eles joguem contra você, assim terá uma idéia se realmente compreenderam. Caso tenha ficado alguma dúvida, proponha uma nova competição, mas com grupos menores.

Não pare agora... Tem mais depois da publicidade ;)

Pertencem ao conjunto dos racionais os números positivos, negativos, decimais, frações e dízimas periódicas. Representamos esse conjunto por meio da letra Q maiúscula:

Quais são os números racionais entre 1 e 2?

Não pare agora... Tem mais depois da publicidade ;)

Lê-se: O conjunto dos números racionais é igual a x, tal que x é igual a (a) sobre (b), (a) pertence ao conjunto dos inteiros e (b) pertence ao conjunto dos inteiros com a ausência do zero.

É possível realizar as quatro operações com os números racionais. Entre essas operações, podemos destacar:

  • Soma de duas ou mais frações:

Não pare agora... Tem mais depois da publicidade ;)

Para somar duas ou mais frações, é necessário que o denominador em todas as frações seja o mesmo. Após verificar isso ou reduzir os denominadores a um mesmo valor por meio do Mínimo Múltiplo Comum (MMC) ou das frações equivalentes, basta conservar o denominador e somar os expoentes. Veja:

Utilizando o MMC para reduzir os denominadores:

1 + 2 + 4 = 1 + 2 + 4 = 3 + 4 + 24 = 31
2    3          2    3      1          6            6


Cálculo do MMC

2, 3, 1| 2
1, 3, 1| 3
1, 1, 1|

MMC (2, 3, 1) = 2 x 3 = 6

Para obter os números do numerador, foi feito o seguinte:

6 : 2 = 3 x 1 = 3
6 : 3 = 2 x 2 = 4
6 : 1 = 6 x 4 = 24

Utilizando as frações equivalentes:

1 x 3+ 2x 2+ 4 x 6= 3 + 4 + 24 = 31
2 x 3   3 x 2   1 x6     6     6    6      6

  • Soma de dois ou mais números decimais

Na soma de números decimais, juntamos número inteiro com inteiro, parte decimal com decimal, parte centesimal com centesimal e assim por diante. Observe o exemplo abaixo:

2,57 + 1,63 =
2 e 1: partes inteiras
0,5 e 0,6: partes decimais
0,07 e 0,03: partes centesimais

Para resolver a soma de números decimais, podemos estruturar o algoritmo da adição.

   2,57
+ 1,63
   4,20
 

Podemos também somar números decimais por meio de frações. Para isso, basta transformar cada número decimal em uma fração. Confira o exemplo abaixo:

2,57 + 1,63 = → Represente os números decimais na forma de fração;
= 257 + 163 = → Como o denominador em ambas as frações é 100, podemos somá-los.
   100    100
= 420 = → Realize a divisão de 420 por 100.
   100
= 4,20

  • Subtração de duas ou mais frações:

O processo de subtração de fração é semelhante ao da soma. A diferença está no sinal da operação, que será de menos. Observe:

5 – 3 – 2 = 5 +( – 3 ) + ( – 2 )= 20 – 9 – 24 = – 13
3    4         3     ( 4 )                       12             12

Cálculo do MMC:

3, 4, 1| 2
3, 2, 1|2
3, 1, 1|3
1, 1, 1|

Para obter os números do numerador, fizemos o seguinte:

12 : 3 = 4 x 5 = 20
12 : 4 = 3 x – 3 = – 9
12 : 1 = 12 x – 2 = – 24
 

  • Subtração de dois ou mais números decimais:


Devemos subtrair número inteiro com inteiro, parte decimal com decimal, parte centesimal com centesimal e assim por diante. Confira o exemplo abaixo:

3,15 – 2,04 – 1 =

Para resolver essa subtração de números decimais, devemos subtrair os dois primeiros termos da esquerda para a direita (3,15 – 2,04).

  3,15
- 2,04
  1,11

Agora temos que subtrair 1,11 – 1 =

 1,11
- 1,00
  0,11

Podemos também resolver o exemplo anterior por meio da subtração de frações. Acompanhe:

3,15 – 2,04 – 1 = → Transforme os números 3,15 e 2,04 em frações.
= 315 – 204 – 1 = → Como os denominadores das frações são iguais, faça a subtração dos numeradores.
   100    100
= 111 – 1 = → Como os denominadores das frações são diferentes, devemos reduzi-los ao mesmo
   100    1        denominador. O MMC (100, 1) é 100.
= 111 – 100 = → Como reduzimos para o mesmo denominador, podemos subtrair os numeradores.
       100
= 11 = → Faça a divisão de 11/100
  100
= 0,11

  • Multiplicação de frações

Na multiplicação de frações, devemos multiplicar os numeradores com numeradores e os denominadores com denominadores. Confira:

3 x 6 = ( 3 x 6 ) = 18 → Como a fração não está na forma irredutível, temos que simplificá-la.
7    4    ( 7 x 4 )    28

3 x 6 = ( 3 x 6 ) = 18 : 2 = 9
7    4    ( 7 x 4 )    28 : 2    14

  • Multiplicação de números decimais

Ao multiplicarmos números decimais, devemos estruturar o algoritmo. Para saber a posição da vírgula no produto obtido, contamos quantas casas decimais possui cada número decimal e deslocamos a vírgula em relação aos algarismos do produto da direita para a esquerda. Observe o exemplo:

2,4 x 1,2 = → Inicialmente estruture o algoritmo da multiplicação.

   2,4
x 1,2
+ 48
   24
    2,88 → Observe que a vírgula ficou entre os algarismos 2 e 6. Isso aconteceu porque o número 2,4 possui uma casa decimal, e o número 1,2 também possui uma casa decimal. Assim, temos, no total, duas casas decimais. Sendo assim, devemos deslocar a vírgula do produto obtido (288) duas casas da direita para a esquerda (2,88).

Poderíamos também resolver esse exemplo por meio de frações.

2,4 x 1,2 = → Transforme os números decimais em frações.
= 24 x 12 = → Multiplique os numeradores (24 x 12) e os denominadores (10 x 10).
   10    10
= 288 = → Faça a divisão de 288 por 100.
   100
= 2,88

  • Divisão de duas ou mais frações

Para dividirmos duas ou mais frações, utilizamos uma regra prática: conserva-se a primeira fração, multiplicando-a pelo inverso da segunda. Recorde-se que o inverso de uma fração é dado ao trocarmos o seu denominador pelo numerador. Veja:

13 : 9 = 13 x 2 = 26
 7    2     7     9    63

1 : 4 : 2 = (1 : 4 ): 2 = ( 1 x 5 ) : 2 = 5 : 2 = 5 x 6 = 30 :2 = 15
2    5  6     ( 2 5 )   6    ( 2 x 4 )   6    8   6     8 x 2    16 : 2    8

  • Divisão de dois ou mais números decimais
     

Para realizar a divisão de números decimais, devemos igualar a quantidade de casas decimais dos números e efetuar a divisão. Confira o exemplo abaixo:

1,23 : 0,5 = → O número 1,23 possui duas casas decimais, e o número 0,5 possui uma casa decimal. Para igualar a quantidade de casas decimais, devemos multiplicar ambos os números pelo termo decimal, ou seja, 10, 100, 1000..., que possui a maior quantidade de casas decimais. Sendo assim, temos que multiplicar 1,23 e 0,5 por 100.

(1,23 x 100) : (0,5 x 100) = 123 : 50 → Utilizando o algoritmo da divisão, temos 123 : 50.
 123 |50
- 100 2,46
  230
- 200
  300
- 300
    0

1,23 : 0,5 = 2,46

Veja agora como transformar os números decimais do exemplo anterior em frações:

1,23 : 0,5 = → Transforme os números decimais em frações.
= 123 : 5 = → Aplicando a regra aprendida anteriormente, conserve a primeira fração e
   100  10        multiplique-a pelo inverso da segunda.
= 123 x 10 = → Faça o produto dos numeradores e dos denominadores.
   100     5
= 1230 = → Realize a divisão de 1230 por 500.
    500
= 2,46

  • Soma, subtração, multiplicação e divisão de dízimas periódicas

A dízima periódica é um número decimal em que os algarismos após a vírgula repetem-se infinitamente. Exemplos: 1,222..., 1,2323..., 2,23562356...

A repetição desses algarismos após a vírgula é chamada de período. Veja:

  • O período de 1,222... é 2.

  • O período de 1,2323... é 23.

  • O período de 2,23562356... é 2356.

Para realizar a soma, subtração, multiplicação e divisão de dízimas periódicas, devemos descobrir o período e aplicar as definições aprendidas anteriormente para números decimais, haja vista que a dízima periódica é um número decimal. Vejamos alguns exemplos:

  • Soma de dízima periódica

2,333... + 1,555... =

O período de 2,333... é 3, e o período de 1,555... é 5. Realizando a soma, temos:
  2,3
+1,5
  3,8
 

  • Subtração de dízima periódica

3,6565... - 1,222... =

O período de 3,6565... é 65, e o período de 1,222... é 2. Fazendo o algoritmo da subtração, temos:

  3,65
- 1,22
  2,43

  • Multiplicação de dízima periódica

5,2323... x 1,111... =

O período de 5,2323... é 23, e o período de 1,111... é 1. Efetuando o produto, temos:

   5,23
x 1,11
   523
+ 523
   523
   5,8053

A multiplicação resultou em: 5,2323... x 1,111... = 5,23 x 1,11 = 5,8053

  • Divisão de dízima periódica

2,5252 … : 0,555... =

O período de 2,5252... é 52, e o período de 0,555... é 5. Realizando a divisão, temos:

2,52 : 0,5 = (2,52 x 100) : ( 0,5 x 100) = 252 : 50
 

  252 | 50
- 250 5,04
  200
- 200
    0

A divisão de: 2,5252 … : 0,555... = 2,52 : 0,5 = 5,04
 

Quais são os números racionais entre 2 e 3?

Entre dois números naturais consecutivos existem infinitas frações, por exemplo: entre 2 e 3 existem 21/10, 5/2, 29/10 e assim por diante.

Quantos números racionais existem entre 0 1 e 0 2?

Vamos seguir a primeira abordagem para descobrir os números racionais entre 0 e 1. Os números racionais necessários podem estar entre esses números. Pode-se escolher qualquer número com decimais finais ou recorrentes. Portanto, os nove números racionais entre 0 e 1 são 0,1, 0,2, 0,3, 0,4, 0,5, 0,6, 0,7, 0,8 e 0,9.

Qual o número racional entre 1 2?

Os cinco números racionais entre 1 e 2 são 11/10, 12/10, 13/10, 14/10 e 15/10.

Quantos números entre 1 e 2?

Resposta: A quantidade de números racionais contidos no intervalo entre 1 e 2 é infinita.