Exercícios 2 Lei de Newton 9 ano

A segunda lei de Newton, também conhecida como princípio fundamental da dinâmica, afirma que a força resultante que atua sobre um corpo é igual ao produto de sua massa pela aceleração. De acordo com ela, quando se sujeita um corpo à ação de uma força resultante não nula, esse corpo adquirirá uma aceleração na mesma direção e no mesmo sentido da força resultante.

Veja também: Equação original da segunda lei de Newton  

De acordo com a segunda lei de Newton, a aceleração obtida por um corpo é diretamente proporcional à força resultante aplicada sobre o corpo e também inversamente proporcional à massa (inércia) desse corpo. Nesse sentido, entende-se que, para que um corpo possa sofrer mudanças de velocidade, é necessário que as forças que atuam sobre ele não se anulem.

No esquema a seguir, mostramos como é possível calcular a aceleração do corpo, com base nas grandezas força e massa, além disso, pode-se observar que a aceleração é dada pela razão entre a variação de velocidade (ΔV) e um intervalo de tempo (Δt):

O conceito de força resultante é de grande importância para a compreensão da segunda lei de Newton. A força resultante diz respeito à soma vetorial de todas as forças que atuam sobre o mesmo corpo. Para fazermos somas vetoriais, é necessário que se leve em conta tanto o módulo quanto a direção e o sentido das forças, assim: forças paralelas somam-se, forças opostas subtraem-se e forças perpendiculares somam-se, segundo o teorema de Pitágoras.

A fórmula da segunda lei de Newton é relativamente simples, ela indica que a força resultante é igual ao produto da massa do corpo pela aceleração, confira:

FR – força resultante (N)

m – massa do corpo (kg)

a – aceleração (m/s²)

A figura a seguir exemplifica situações em que, aplicando-se a mesma força, obtém-se diferentes acelerações, em razão da grande diferença das massas dos corpos, observe:

Além dessa forma, a segunda lei de Newton pode ser definida por outras equações. Originalmente, a ela foi escrita em termos de uma grandeza física chamada quantidade de movimento ou momento linear. De acordo com esse enunciado, a força resultante sobre um corpo é igual à variação de sua quantidade de movimento durante um determinado intervalo de tempo, confira:

ΔQ – variação da quantidade de movimento (kg.m/s)

Δt – intervalo de tempo (s)

Na equação anterior, Q representa a quantidade de movimento, de um corpo ou sistema, que pode ser calculada por meio desta equação:

Q – quantidade de movimento (kg.m/s)

v – velocidade (m/s)

Existe ainda outra forma alternativa de definir-se a segunda lei de Newton. De acordo com essa descrição, a força resultante sobre um corpo também pode ser definida com base no impulso aplicado no corpo. O impulso, por sua vez, é uma grandeza física vetorial, assim como variação da quantidade de movimento (ΔQ), confira:

Em complementação à fórmula exposta, existe o teorema do impulso. Esse teorema afirma que o impulso é igual à aplicação de uma força resultante durante um intervalo de tempo e produz uma variação na quantidade de movimento de um corpo ou sistema de corpos, confira:

Exercícios 2 Lei de Newton 9 ano
O teorema estabelece a relação entre força e variação da quantidade de movimento.

 

Exercícios 2 Lei de Newton 9 ano
A aplicação da força sobre o trenó resulta em uma mudança da quantidade de movimento.

Exemplos da segunda lei de Newton

Confira alguns exemplos de situações cotidianas que ajudam a ilustrar a segunda lei de Newton:

  • Primeiro se imagine empurrando um carrinho de compras vazio. Agora, caso esse carrinho estivesse cheio de mercadorias e você aplicasse sobre ele a mesma força usada enquanto  estava vazio, teríamos o mesmo movimento? Não, uma vez que, com o carrinho cheio, sua inércia será maior, por isso será necessário que se aplique uma força maior, a fim de obter-se a mesma aceleração.
  • Em um cabo de guerra, dois grupos de crianças disputam, no entanto, ambos aplicam a mesma força no cabo. Nesse caso, a aceleração do sistema será nula, uma vez que as forças que atuam sobre ele anulam-se.
  • Ao chutar-se uma bola, percebe-se que a força aplicada pelo chute define qual será a velocidade em que a bola será lançada: quanto maior é a força, maior será a aceleração adquirida pela bola, o mesmo aplica-se a bolas de diferentes massas, uma vez que: quanto mais leve é a bola, mais aceleração ela adquire.

Confira exemplos de exercícios resolvidos relacionados à segunda lei de Newton:

Exemplo 1) Um corpo de massa igual a 10 kg move-se com aceleração constante de 0,5 m/s². Determine a intensidade da força resultante sobre esse corpo.

Resolução:

Basta multiplicarmos a massa do corpo pela aceleração, confira:

Exemplo 2) Quando sujeito a uma força resultante de 100 N, um corpo passa a mover-se com aceleração constante de 0,5 m/s². Qual é a massa desse corpo?

Resolução:

Vamos resolver esse exercício por meio da fórmula da segunda lei de Newton (FR = ma), observe:

Ao aplicarmos os valores fornecidos pelo enunciado na fórmula da segunda lei de Newton, descobrimos que a massa do corpo deve ser de 200 kg para que ele desenvolva uma aceleração de 0,5 m/s².

Saiba mais: Cinco erros conceituais da física – venha aprender quais são!

Exercícios sobre a segunda lei de Newton

Questão 1) Uma motocicleta de 500 kg encontra-se em repouso e passa a acelerar a uma taxa constante de 0,2 m/s², durante um intervalo de tempo de 5,0 segundos. Determine a intensidade da força exercida sobre essa motocicleta.

a) 250 N

b) 2500 N

c) 100 N

d) 100 N

e) 25 N

Gabarito: Letra c

Resolução:

Para resolvermos esse exercício, basta levarmos em conta a massa e a aceleração do corpo, observe:

Questão 2) Uma força de 200 N é aplicada a um corpo durante um intervalo de tempo de 2,0 s. O impulso exercido sobre esse corpo, durante esse intervalo de tempo, é igual a:

a) 400 N.s

b) 40 N.s

c) 10 N.s

d) 4000 N.s

e) 0,2 N.s

Gabarito: Letra a

Resolução:

A solução desse exercício exige a aplicação da fórmula do impulso, confira:

Ao aplicarmos os dados do exercício, encontramos um empuxo igual a 400 N.s, logo, a alternativa correta é a letra a.

You're Reading a Free Preview
Page 2 is not shown in this preview.

Rosimar Gouveia

Professora de Matemática e Física

A Segunda Lei de Newton estabelece que a aceleração adquirida por um corpo é diretamente proporcional a resultante das forças que atuam sobre ele.

Como a aceleração representa a variação de velocidade por unidade de tempo, a 2ª Lei indica que as forças são os agentes que produzem as variações de velocidade em um corpo.

Também chamada de princípio fundamental da Dinâmica, foi concebida por Isaac Newton e forma, junto com outras duas leis (1ª Lei e Ação e Reação), os fundamentos da Mecânica Clássica.

Representamos matematicamente a Segunda Lei como:

Onde,

Força e aceleração são grandezas vetoriais, por isso estão representadas com uma seta sobre as letras que as indicam.

Sendo grandezas vetoriais, elas necessitam, para ficarem totalmente definidas, de um valor numérico, de uma unidade de medida, de uma direção e de um sentido. A direção e o sentido da aceleração será o mesmo da força resultante.

Na 2ª Lei, a massa do objeto (m) é a constante de proporcionalidade da equação e é a medida da inércia de um corpo.

Desta forma, se aplicarmos a mesma força em dois corpos com massas diferentes, o de maior massa sofrerá uma menor aceleração. Daí concluímos que o de maior massa resiste mais as variações de velocidade, logo tem maior inércia.

Exercícios 2 Lei de Newton 9 ano
Exercícios 2 Lei de Newton 9 ano
A força é igual a massa vezes a aceleração

Exemplo:

Um corpo de massa igual a 15 kg move-se com aceleração de módulo igual a 3 m/s2. Qual o módulo da força resultante que atua no corpo?

O módulo da força será encontrado aplicando-se a 2ª lei, assim temos:

FR = 15 . 3 = 45 N

As Três Leis de Newton

O físico e matemático Isaac Newton (1643-1727) formulou as leis básicas da Mecânica, onde descreve os movimentos e suas causas. As três leis foram publicadas em 1687, na obra "Princípios Matemáticos da Filosofia Natural".

Newton se baseou nas ideias de Galileu sobre a inércia para formular a 1ª Lei, por isso, é também chamada de Lei da Inércia e pode ser enunciada:

Na ausência de forças, um corpo em repouso continua em repouso e um corpo em movimento move-se em linha reta, com velocidade constante.

Em resumo, a Primeira Lei de Newton indica que um objeto não pode iniciar um movimento, parar ou mudar de direção por si, somente. É preciso a ação de uma força para provocar alterações em seu estado de repouso ou movimento.

Terceira Lei de Newton

A Terceira Lei de Newton é a Lei da "Ação e Reação". Isso significa que, para cada ação, há uma reação de mesma intensidade, mesma direção e em sentido oposto. O princípio da ação e reação analisa as interações que ocorrem entre dois corpos.

Quando um corpo sofre a ação de uma força um outro receberá a sua reação. Como o par ação-reação ocorre em corpos diferentes, as forças não se equilibram.

Saiba mais em:

Exercícios Resolvidos

1) UFRJ-2006

Um bloco de massa m é abaixado e levantado por meio de um fio ideal. Inicialmente, o bloco é abaixado com aceleração constante vertical, para baixo, de módulo a (por hipótese, menor do que o módulo g da aceleração da gravidade), como mostra a figura 1. Em seguida, o bloco é levantado com aceleração constante vertical, para cima, também de módulo a, como mostra a figura 2. Sejam T a tensão do fio na descida e T’ a tensão do fio na subida.

Determine a razão T’/T em função de a e g.

Esconder RespostaVer Resposta

Na primeira situação, como o bloco está descendo o peso é maior que a tração. Assim temos que a força resultante será: FR=P - T
Já na segunda situação, ao subir T' será maior que o peso, então: FR=T' - P Aplicando a 2ª lei de Newton, e lembrando que P = m.g, temos:

Exercícios 2 Lei de Newton 9 ano
Dividindo (2) por (1) , encontramos a razão pedida:

2) Mackenzie-2005

Um corpo de 4,0kg está sendo levantado por meio de um fio que suporta tração máxima de 50N. Adotando g = 10m/s2, a maior aceleração vertical que é possível imprimir ao corpo, puxando-o por esse fio, é:

a) 2,5m/s2
b) 2,0m/s2
c) 1,5m/s2
d) 1,0m/s2
e) 0,5m/s2

Esconder RespostaVer Resposta

T - P = m. a (o corpo está sendo levantado, então T>P) Como a tração máxima é de 50 N e P = m . g = 4 . 10 = 40 N, a maior aceleração será:

Alternativa a: 2,5 m/s2

3) PUC/MG-2007

Na figura, o bloco A tem uma massa mA = 80 kg e o bloco B, uma massa mB = 20 kg. São ainda desprezíveis os atritos e as inércias do fio e da polia e considera-se g = 10m/s2 .

Sobre a aceleração do bloco B, pode-se afirmar que ela será de:

a) 10 m/s2 para baixo.
b) 4,0 m/s2 para cima.
c) 4,0 m/s2 para baixo.
d) 2,0 m/s2 para baixo.

Esconder RespostaVer Resposta

O peso de B é a força responsável por deslocar os blocos para baixo. Considerando os blocos como um único sistema e aplicando a 2ª Lei de Newton temos:
PB = (mA + mB) . a

Alternativa d: 2,0 m/s2 para baixo

4) Fatec-2006

Dois blocos A e B de massas 10 kg e 20 kg, respectivamente, unidos por um fio de massa desprezível, estão em repouso sobre um plano horizontal sem atrito. Uma força, também horizontal, de intensidade F = 60N é aplicada no bloco B, conforme mostra a figura.

O módulo da força de tração no fio que une os dois blocos, em newtons, vale

a) 60 b) 50 c) 40 d) 30

e) 20

Esconder RespostaVer Resposta

Considerando os dois blocos como um único sistema, temos: F = (mA + mB) . a, substituindo os valores encontramos o valor da aceleração:

Conhecendo o valor da aceleração podemos calcular o valor da tração no fio, vamos usar para isso o bloco A:

T= mA . a
T = 10 . 2 = 20 N

Alternativa e: 20 N

5) ITA-1996

Fazendo compras num supermercado, um estudante utiliza dois carrinhos. Empurra o primeiro, de massa m, com uma força F, horizontal, o qual, por sua vez, empurra outro de massa M sobre um assoalho plano e horizontal. Se o atrito entre os carrinhos e o assoalho puder ser desprezado, pode-se afirmar que a força que está aplicada sobre o segundo carrinho é:

a) F b) MF/ (m + M) c) F (m + M) / M d) F / 2

e) outra expressão diferente

Esconder RespostaVer Resposta

Considerando o dois carrinhos como um único sistema, temos:

Para calcular a força que atua no segundo carrinho, vamos usar novamente a 2ª Lei de Newton para a equação do 2º carrinho:

Alternativa b: MF/(m+M)